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ADDENDUM

LOW COST ANTI-JAM DIGITAL DATA-LINKS TECHNIQUES INVESTIGATIONS
AFAL-TR-77-104, VOLUME 11
MAY 1979

This addendum contains results which were completed too late for in-
clusion in the main part of the Interim Report. These results should prop-
erly have been included in Section 1V., 1. However, the nature of the re-
sults is such that none of the findings or conclusions of the report are
subject to change.

The Monte Carlo simulation routine, described in [1], was modified to
include DPSK as a signal option, along with PSK and FSK. A random sequence
of binary symbols was generated as usual. However, these symbols were then
differentially encoded as per Table 1. At the receiver, several detectors
were implemented. These included the standard detector for PSK and the IDEI
detector for PSK. Also, the standard detector for DPSK was implemented,
based on equations (78) - (83). Finally, an IDEI DPSK detector was imple-
mented, using the IDEI-PSK detector and differential decoding.

Figure 49 shows the "calibration curve" for the various detectors.

This graph serves the same purpose as Figure 7 and shows the Monte Carlo
performances of the standard PSK detector, IDEI detector with differential
decoding and standard DPSK detector, respectively, for white noise only.
It is seen that the results appear the same as those in [10] and [13].

Figure 50 shows the results for multiplicative noise equal in strength
to the desired signal, with a low-pass equivalent noise bandwidth of 275 Hz.
This is the same "diffuse Doppler-spread multipath" disturbance as was used
in Figure 9. The error rates for IDEI and standard detectors for PSK in
Figure 50 fall upon those in Figure 9. The standard DPSK error rate is a
little better than that for PSK, however the DPSK error rate is still sat-
urated and unusable. The error rate for the IDEI detector using differen-
tial decoding is slightly worse than that for PSK, but this is to be expected.

The explanation for the poor performance of standard DPSK in this mul-
tiplicative noise environment is that the disturbance causes the received
signal phase to violate the "slow-phase" restriction inherent in the deriv-
ation of the standard DPSK detection algorithm. Indeed, the phase-jitter
process has a bandwidth of at least 275 Hz. which is not slow compared to b

the symbol rate of 2,500 BPS.




The performance of the IDEI detector is good, not because of the dif-
ferential decoding, but because the equivalent phase disturbance on the
received signal is being tracked out by the IDEI detector.

It should be recalled that the IDEI detector is being furnished with
an unperturbed phase reference locked to that of the transmitted signal.
However, it has been shown in a previous investigation [3] that the IDEI
detector also tracks out phase reference perturbations due to the multipli-
cative noise effects on the carrier phase-locked loop, without an increase
in error-rate. Thus the present IDEI results are valid for multiplicative
noise with jittery phase reference.

Based on the above, two conclusions are clear. DPSK with a standard
detector is unusable in diffuse aeronautical multipath due to violation of
the "slow-phase" restriction on the standard DPSK detector. DPSK is un-
necessary in diffuse aeronautical multipath if an IDEI detector is used,
since PSK provides better performance.
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PREFACE

From 1971 through 1973, a new sampled-data processing technique for
anti-multipath reception of aeronautical data-link signals was developed,
and subsequently patented by the Principal Investigator, at NASA Langley
Research Center. In 1974 a contract was issued by the Air Force Avionics
Laboratory to determine if the same technique which provided processing gain
against diffuse Doppler-spread multipath perturbations could be modified
for use in anti-jam processing.

Anti-jam processing algorithms were produced under the 1974 contract,
as well as a Monte Carlo simulation package for evaluating the performance
of the algorithms. The contract was extended in 1976 for the purpose of
making an exhaustive performance evaluation of the new processing algorithms,
The present report gives the results of the performance evaluation conducted
during the period from October 1976 through February 1978.

The results of the performance evaluation have been favorable toward
continued development of the A-J processing technique. Further investiga-
tions have been identified and the contract has been extended for a further
period. The present results have shown the A-J processing gain which is
available through the new technique. Future efforts will be devoted to
means for realizing this gain.
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SECTION 1
INTRODUCTION

This is a report on the second phase of an investigation into new
techniques for communicating digital data between two terminals in an en-
vironment subject to multiplicative and additive colored noise and additive
white noise. The multiplicative noise is a model for non-frequency-selec-
tive fading due to Doppler-spreading such as caused by diffuse multipath
reflections. The additive colored noise is a model for radio-frequency
interference or jamming.

The communication technique being investigated is a receiver-based
processing technique for standard signal modulations such as Phase-Shift-
Keying, Frequency-Shift-Keying and Differential-Phase-Shift-Keying. The
technique does not require the use of Spread-Spectrum modulations. The
particular processing used is called Integrated Detection, Estimation, and
Identification (IDEI). It is nearly optimum, under the minimum probability
of error criterion, for M-ary signaliing in additive and multiplicative
Gaussian noise.

The results of the first phase of the investigation were documented
in [1]. 1In that phase the optimum IDEI algorithms were derived and an
elaborate Monte Carlo simulation package was written for testing the algo-
rithms for PSK and FSK binary signals. The purposes of the second phase
of effort were several. First, it was required to determine the best per-
formance of the IDEI algorithms, operating with known bit timing and carrier
phase references, and for perfect identification of the required statistics
of the colored interfering processes. Second, it was required to determine
the sensitivity of the detection algorithms to accuracy of the identifica-
tion of the interference. Third, it was required to derive and validate
optimum identification algorithms. Finally, it was required to form an
initial estimate of receiver practicality.

The four requirements on the fourteen month investigation, described
above, have been fulfilled and the results are documented below. During
the course of the investigation a closed-form numerical expression was
derived for evaluating the best performance and the sensitivity of the
IDEI detector. Use of the closed-form for numerical computations was much
more efficient, time-wise, than was use of the Monte Carlo simulation.

Thus, .more voluminous results were produced than might have been anticipated

on a simulation basis only.
1




This report contains five main sections, excluding the Introduction and
Conclusion. In Section II are presented all the mathematical analyses
pertaining to the probability of error, or error rate, of the IDEI detector.
These include the derivation of the closed-form error rate expression
under mis-identification, a spectral analysis of the IDEl detector with
perfect identification, the IDEI detection algorithms for DPSK, closed-
form error rate determination for standard detectors, and the derivation of
the Uniformly Most Powerful property of the IDEI detector.

In Section III are presented the mathematical derivations and results
for Maximum-Likelihood Identification of In-Phase/Quadrature Vector
Processes. These include derivation of a minimum canonical form for the
I-Q generator model, derivation of the M-L identification algorithms, and
validation results for the estimation performance of the MLI algorithms.

In Section IV are presented all the numerical results obtained in the
present investigation, either by Monte Carlo methods or by closed-form
numerical evaluation. These include a comparison of Monte Carlo versus
closed-form error-rate results for PSK and FSK, IDEI error-rate with per-
fect identification, IDEI error-rate sensitivity to identification error,
and error-rate performance of the MLI algorithms.

Section V contains the receiver design and practicality evaluation.
Section VII contains the appendices.

The outcome of this second phase of the investigation may be summa-
rized as follows. It will be shown below that the IDEI detection algo-
rithms are reasonably robust (insensitive) to error in identification of
the colored interference process statistics, provided the errors are made
in a particular way. If the tracking filters are synthesized to match an
identified disturbance process which is of different bandwidth and/or
strength from the true process, then the algorithms' performance changes
smoothly, proporiional to the bandwidth or strength errors. If, however,
the filter parameters are directly identified from the received signals
using an optimum stochastic (maximum-likelihood) technique, rather than
synthesized in a deterministic manner, the detector performance is highly !
sensitive to identification error. Thus it appears that the practicality
of the IDEI algorithm hinges on the exact method by which identification
is implemented. Further work is suggested in this area.
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It is also shown below that the best performance (perfect identifica-
tion) of the IDEI detector is orders of magnitude better than that of
standard matched filter detectors in an environment of heavy additive col-
ored noise. The IDEI detector provides gain against narrow-band interfer-
ence equivalent to spectrum-spreading factors of the order of 103 to 104.
It is also shown that the amount of gain is a function not only of the
inéérference to signal ratio, but also of the degree of similarity between
siénal spectrum and interference spectrum.

Suggested steps toward reducing the present theoretical results to
practice are outlined in Section VI.




SECTION II
ERROR RATE ANALYSES FOR INTEGRATED
DETECTION, ESTIMATION, AND IDENTIFICATION

1. CLOSED-FORM ERROR RATE UNDER MIS-IDENTIFICATION

The emphasis of the work being presently reported was on the perfor-
mance of the new disturbance-tracking IDEI coherent detection algorithms
for binary signals subject to additive colored plus white noise. The
colored noise represents a jamming signal while the white noise represents
receiver-generated interference. Thus, the analytical results presented
in this section are based on a simplification of the more general multi-
path and jamming model treated in [1]. It is assumed that the received
data is in In-phase/Quadrature (I-Q) form, resulting from a standard
coherent product demodulation of the band-pass radio-frequency signal.

A vector-Markov data generating model is hypothesized, as in Figure 1.

The data model has been obviously simplified, such as by deleting any vec-
tor-muitiplicative noise as might result from impure phase references in
the 1-Q demodulator. Such effects have been treated elsewhere [1, 2, 3].
The simple model will suffice for the present investigation.

In Figure 1, the I-Q data, z(k), is in sampled-data 2-vector form,
where k is samplc number. s(k;m) is a 2-vector waveform representing the
low-pass I-Q components of the transmitted signal. m is the transmitted
symbol, taken here as a member of the binary alphabet, {C, 1}. Given the
value of m, the waveform of s(k;m) is known for all k =1, 2, .... It
is assumed that the signals, s(k;m = 0) and 4(k;m = 1), are A Priori )
equally likely and have equal energy on the symbol period. Likewise, n(k)
is the I-Q 2-vector of additive white Gaussian noise. n(k) is taken as
zero-mean with known diagonal variance matrix, Vnn'

In Figure 1, the additive colored noise is generated as y(k). The
2-vector, y(k), is obtained from a 2N-vector, x(k), through the output 2
by 2N matrix, A. The transition matrix, ¢, is 2N x 2N. The filter which
produces y(k) is excited by a white, zero-mean, unit-variance Gaussian
input 2-vector, w(k). The input matrix, r, is 2N x 2. By choosing the
constant filter structure, {T, %, A, N}, properly, the filter will, in the
steady-state, generate a stationary, zero-mean y(k), having a prescribed
covariance matrix, vyy(j) for j =0, 1, 2, .... Using a suitable sampling

4
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model, the covariance matrix, Vyy(j) may be related to the continuous-time
power spectrum of the additive colored interference. The equations govern-
ing the data generator are:

x(k + 1) = ox(k) + rw(k); x(Q) prescribed
y(k) = ax(k)
2(k) = s(ksm) + y(K) + n(k); ECy(k)} = En(K)} = O
m=20,1

v () = Tim Egy(k + Sy () k=1, 2, ....

ke j=0,1,2, ....
Vo (k- 3) = E((k)n' (G =V - 6.

nn — = nn jk
6jk is Kroneker delta
= o2
Vnn 0n12x2 ()

With the data modeled as discussed above, the IDEI detector takes the
form of Figure 2, which is a special case of the more general receiver for
multiplicative and additive noise, treated in [1]. This version of the
IDEI detector is the decision-directed approximation to the optimum detec-
tor under the Maximum A Posteriori Probability (or Maximum Likelihood, or
Minimum Probability of Error) criterion. The detector operates as follows.

From each incoming data sample in the upper branch is subtracted the
corresponding sample of the signal reference waveform for the symbol m = 0.
In the lower branch, the reference waveform for m = 1 is subtracted from
the data. Following the signal subtraction is a filter which attempts to
track the colored additive noise, y(k), in the presence of the white noise,
n(k). The filter is linear and is in the canonical form of a Kalman filter
with gain, G. Under the stationarity assumption the gain G is constant
and the steady-state Kalman filter is just a particular form of the Wiener
filter [4]. Note that the requirement for an exact signal reference
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waveform implies identifying the level or strength of the desired signal
component in the received data. This implication was commented upon in
[1]. However, it turns out that the IDEI algorithms possess the Uniformly
Most Powerful [5] property with respect to the strength of the desired
signal component. This property is derived in a following section. The
effect of this property upon identification is detailed below.

The feedback tracking error waveform in each filter is designated
gT(k;m;n). The argument n denotes the assumed symbol (and filter). The
argument m denotes the symbol actually present in the data. gT( ) is a
2-vector. The tracking error waveforms from each filter are processed in
a quadratic form which essentially squares and averages the waveforms over
the K samples per signal symbol. The sum-squared tracking errors for each
filter are then compared at the end of each symbol period. The filter
displaying the least sum-squared tracking error is assumed to have been
using the "correct" signal reference and the symbol decision is made ac-
cordingly.

The tracking filters are operated with decision direction. At the
end of a symbol period, after decision has been made, the state vector of
the "wrong" filter is reset to the state of the "correct" filter. In the
case of a correct previous decision, both filters start the subsequent
symbol period "locked" to the colored additive interference, y(k). In the
case of an incorrect decision, both filters are incorrectly initialized
for the following symbol period.

Monte Carlo simulations have been used to evaluate the performance of
the IDEI detection algorithms. These results are given below. The algo-
rithms were exercised with colored multiplicative noise or colored addi-
tive noise, individually, along with white additive noise. The simulated
error rates were compared with those of standard detectors for both binary
PSK and FSK modulations. It was found that for white noise only, the new
detection algorithms gave exactly the same errors, symbol for symbol, as
the standard algorithms. However, in the presence of colored additive or
multiplicative noise the IDEI algorithms always yielded better performance
than did the standard receiver.

Naturally, it is desirable to have closed-form expressions for the
error rate performance, to back up and extend the simulation results.

Such expressions are readily obtained, provided one more assumption is

7




made. The probability of error for a particular symbol is easily formu-
lated under the assumption that the tracking filters were correctly initi-
alized or, equivalently, that the previous decision was correct. This
assumption becomes increasingly good as the error rate becomes smaller,
provided the errors do not cluster. Error rate curves based on the assump-
tion will be lower bounds for the practical IDEI error rate performance.
A comparison with Monte Carlo results for clustered errors will show the
usefulness of the lower bound.

Under the assumption of a correct prior decision, the general detec-
tion statistic of [1] may be written as

S = '§ Tiksmsn = 0) V21 e (ksmsn = 0) - el(ksmzn = 1) -
(LoTremn 11 &riiems Erixsmin =

Vit ep(ksmsn = 1) (2)

where gT(k;m;n) is the filter's total transient tracking error waveform
and VII is the assumed Innovations variance. From Figure 2 it may be seen
that the total transient tracking error may be partitioned into a response
due to the zerc-mean Gaussian noises (colored and white) and a response
due to the desired signal and reference terms. Thus, define

ep(ksmn) = £(k) + e, (ksm;n) (3)

where £(k) is the (pseudo-Innovations) response due to zero-mean stochas-
tic input and gA(k;m;n) is the filter's transient response to a driving
function

u(k) = s(k;m) - as(k;n) (4)

In (4) a is the identification estimate of the desired signal level,
which is unity for perfect identification. Because of the Uniformly Most
Powerful property of the IDEI algorithms, 5 may just be set to unity.
when identification is perfect, including the filter parameters, then £(k)
is identically v(k), the Innovations process, and p(k) is identically zero
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when m = n. Thus,

gﬁ(k;m;n) =0 Yk 3 m=n
gﬁ(k;m;n) #0 Yk 5 m#n
£(k) = v(k)
_ : Perfect Identification (5)
Voo =V
11 vv

Substituting (3) into (2) yields

T

k) Vi} [gé(k;m;n = 0) - gﬁ(k;m;n =1) +
Tivomen = -1 cmen = Tivemen =
gﬁ(k,m,n = O)VII g%(k,m,n = Q) - gﬁ(k,m,n = 1)
Vf} g, (kimin = 1)} (6)
The process, £(k), is zero-mean, Gaussian and, conditioned on m the gt( )

are deterministic. Thus S is conditionally Gaussian and is described by
the following means and variances.

K
E(S|m=0} = § [el(kim=0;n=0)V]] e, (k;m=0;n=0) +
k'—‘] —4 =4

-gl(k;m=0;n=1)v;} gﬁ(k;m=0;n=]) &
E{S|m=1} = E [ET(k’m=1'n=0)V-] (k;m=1;n=0) +
k=1 = ’ I1 26 ? ’
el (ksm=13n=1)v7) e (ksm=13n=1)] & (7)
=g\ * I1 =5\ s » u

In (7) the assumption has been employed that (equal energy) the sum-squared

tracking errors are equal. The conditional variances are




var{S|m=0} = var{S|m=1} =

K K T
4 1 ] le,(3im=0;n=0) - e, (3;m=0;n=1)]'V; -
3=1 k=1

Vgg(j-k)vf}[gﬁ(k;m=0;n=0) - gé(k;m=0;n=1)] 2 52 (8)

where Vgg(j-k) is the auto-covariance function of the process, £(k), which
is in general colored.

It is shown in Appendix A that the auto-covariance function of the
pseudo-innovations, £(k) is given by

T T

_ £-1
vgg(z) = A[e*(I - G*A)] ¢*[V;%A - G*(AV;;A + vnn)]
¢ £-1 iy T
+ A Y [o*(I - G*p)] IR A Y B 0<¢#
4

1

T .
Mah™ + Vs

o
il
(o]

(9)

where ¢* and G* are the values of the identified {or assumed) transition
matrix and Kalman gain respectively. ¢* and ¢ are related by

o* = ¢ - A (10)

The quantity V;Q is the actual predicted state estimation error variance
matrix. The quantity Vx% is the cross-variance between the state and
state prediction error. Both V;Q and Vx} are obtained as solutions to
appropriate discrete-time Ricatti difference equations, which are derived
in Appendix A. The method of solution used is to propagate the equations
numerically until steady state is reached, according to a Cauchy test on
succeeding stages. The quantity, vnn’ is the variance matrix for the
white additive noise, n(k).

With u and o defined by (7) and (8), respectively, the error rate or
probability of error is given by

10




] H
P = ] - f —t ]]
(e) 2| er ( 20)] ( )

where "erf" denotes "error function". For the case where identiftication
perfect, (7) and (8) simplify and (11) becomes

P(e)

1 Y
=[1 - erf(-£9)] =
2 [ er ( ]

20

1 - erf / %— gl(k;m=1;n=0) V;lgé(k;m=l;n=0) 1
N k=1 i
-

N~
I~ 2%

POt

(12)
where Vvv is the true Innovations variance.

2. SPECTRAL ANALYSIS QF THE IDEI DETECTOR WITH PERFECT IDENTIFICATION

It has been observed lately by Schwartz [6] ... “that the discrete-
time formulation may provide insight into constructive techniques for
realizing, or approximating, the rather general (and sometimes abstract)
results that have appeared for the continuous-time versions." ... of
receivers containing estimators. The observation certainly proved true
for the IDEI receiver wherein the disturbance tracking feature was a
direct result of the discrete~time sequential formulation of the detec-
tion statistic. However, the present formulation of the error rate prob-
ability on a discrete-time basis yields even more insight into the detec-
tion problem,

For instance, equation (12) shows that the effective noise in the
detection problem is evidently the Innovations process, since its vari-
ance, Vvv, plays the part of o2 in the error function argument. Thus
the error rate is controlled, not be the total power of the additive
colored interference, but rather by the power in the untracked portion
of the colored interference, plus the white noise power. Secondly, the
Innovations variance is minimized, and consequently the error rate is
minimized when the filter is "matched" to the colored interference wave-
form in the Wiener sense.

11
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Equation (12) also shows that the effective signal power is propor-
tional to the sum of the squares of the deterministic tracking error wave-
form of the "matched" filter when driven by the difference of the two
possible versions of the transmitted signal. There are two obvious ways
to maximize this effective signal power and thus minimize the error rate.
One is to maximize the distance between the two signal vectors, s(k;m=0)
and s(k;m=1). The maximum distance is obtained when the two possible
transmitted signals are anti-correlated. Optimization may also be obtain-
ed by designing the signal waveform so as to maximize the tracking error
at each sampling instant. Note that the deterministic transient error
response of the "matched" filter will only approach zero identically when
the filter bandwidth (and, hence, the bandwidth of the colored interfer-
ence) is orders of magnitude greater than the transmitted signal bandwidth.

While the formulation of (12) lends itself to some qualitative obser-
vations about the behavior of the detector, it is desired to translate the
parameter, u/v2o0, into a different form. In his treatment of the optimum
continuous-time detection of known binary signals in colored noise,

Blachman [7] was able to relate detector performance to the spectra of
signals and noise. The present discrete-time problem may be examined
similarly by assuming arbitrarily fast sampling and transforming to con-
tinuous-time.

A continuous-time version of the sampled-data detector may be set up
by assuming that the symbol interval is the closed interval, [-T/2, T/2].
The continuous decision statistic is then

2 g T
S =17 _ [er(timn=0) e;(tim;n=0) - e(t;msn=1)
-1/2

er(timsn=1)1dt (13)

The mean and variance of the statistic are then

T/2 T
p=J gb(t;m=1;n=0) gﬁ(t;m=1;n=0)dt
-1/2 (14)
T/2 T/2 T
o2 = 4f ! e (t;m=0;5n=1)V__(t-t')e (t;m=0;n=1)dtdt’
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Now define

n(t) = 1; t « [-T/2, T/2)
= 0; otherwise (15)
and define
x(t) = n(t) - gﬁ(t;m=0;n=1) (16)

Then (14) may be written as

X (t)x(t)dt

b =4
n

0 «©

12, KV (£t )x(t" et (17)

Q
N
"

4 s

-0

By Parseval's Theorem, then,

b g 12 K (W)X (w)do (18)

where X(w) is the Fourier Transform of x(t), and ()* denotes complex
conjugate.
Next observe that

-t! ' Vo= é
I ves(t t')x(t')dt Vgg(t)*a(t) q(t) (19)
where ()x() denotes convolution. Thus

a2

47 X' (t)g(t)dt

A 7, X ) @ (e)de]

-y -

= 40— 1 XTS5, (w)X(0)]*dw] (20)
2n £E

-0 -

where S F(w) is the Fourier Transform of the auto-covariance matrix func-
tion of the pseudo-innovations.

13

~-"‘""‘"-‘m’rw-‘..., g vy e s §




e — ST T -W

Now, X(w) is
X(w) = [T s1nc( )]*E (w) (21)

where gb(w) is the Fourier Transform of the transient error waveform,
gﬁ(t;m=];n=0), and sinc( ) is the function

sinc(x) = sin{mx) (22)

X

Thus, the argument of the probability of error function, P(e), is

T 7 T sinc(8D+E, (w)1TLT sine (S0, (0)1*du

/12— f [T s1nc( )*E (w)] S* (m)[T smc(——)*E (0))*dw

2

o
Y20

(23)

Now, assume perfect identification and also that the bandpass spec-
trum of the additive colored interference is even-symmetric with respect
to the carrier frequency of the transmitted signal. Then, £(t) is the
true innovations and is white. Thus, Sgg(“) is diagonal and constant,
with

s, (w) = nly (24)
£E 01

where n is the white noise spectral density for each I and Q component of
the white noise. Note that the bandpass white noise density is n/2.
Then (23) becomes

;;; - %;‘f-w T [T s1nc(2T)*E ()T s1nc(§—)*E*(w)]dm
(25)

Since the additive colored interfering process spectrum is even-symmetric
with respect to carrier frequency, the I and Q portions of the Wiener
filter are not cross-coupled. Then
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| S,1 ] _ Hlw) Sél(“)1
Eé(w) = He(u) [S (w) | = ‘l H:(w) SAQ("’): (26)
. ! |

- - -

where He(w) is the Wiener filter transfer function from input to error
point, for either the I or the Q filter. SAI(“) and SAQ(“) are the Fourier
transform of the differences of the two possible I and Q signal components,
respectively.

Now He(w) is a whitening filter for the sum of additive colored inter-
ference plus white noise. The transfer function is such that

[H (w)]2 - [Syy(w) +n] =n (27)

where S y(w) is the spectral density of either the I or Q component of
the colored interference. To minimize the error rate, P(e), requires

maximazation of-;%— , as given in (25). This requires maximizing the
20

integral of the convolution of T- s1nc( ) with the whitened S I(w) and

(w).

AQ To obtain more visibility into the problem, assume that the length
T of the detection interval is much greater than the reciprocal of the
highest frequency present in the whitened difference signal spectrum.
This would occur if the symbols were being detected in blocks (block-
coding). Then the convnlution with T. s1nc( ) approximates convolution

with a delta function, which just reproduces gt(w). Then (25) becomes

2w

<[5 1 )2 - LS, ()2 4 S,0(u)[2)de

E,(0) + Ef(w)du

CDl—‘

S {w)]|?2 + |S, Alw)]?
1 S+ Tl )
Syy(“) +n

Ih
L
2

=/ 5
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In terms of the band-pass parameters, (28) is

w 1 15,(w)]?
'E_'=V/%; / o % 3 Aw 7y du (29)
V20 yy n

The limiting case of (29) as n » 0 is the classical whitening filter
result, given by Blachman [7].

In the form of (29) it is clear why some signals should outperform
others for a fixed interfering spectrum. Suppose the spectrum, S  (w),

decreases as —% for increasing w and the spectrum ISA(w)IZ, decreases as

W
—%. For M < N, as white noise level, n, goes to zero, the intergrand
w
approaches kwN'M and the infinite integral becomes arbitrarily large.
This would be a singular detection problem. In practice, however, n will

remain finite and the integrand will approach —§u fFor 1 < M, singular
w
detection will not occur.

As Blachman commented, it is clear that “he spectrum ISA(m)I2 should
be made large where the spectrum Syy(w) is small and vice versa, in order
to minimize P{e). Failing this, the tails of the spectrum ISA(w)l2 should
be made to decay at a rate less than that of Syy(w), at least in the fre-
quency range over which the detector responds.

Example: PSK Versus FSK

(28) will be evaluated for PSK and FSK signalling waveforms. The In-

phase and Quadrature Tow-pass waveforms are

AI(t;m) = A cosé(t;m) (30)
4Q(t;m) = A sin¢(t;m)
where o(tsm) = a¢pc(m) ; PSK
= Awtec(m); FSK (31)
and cm) =1:m=0
=-1:m=1 (32)

vhere A¢ and Aw are the modulation index and frequency deviation,
respectively. Then,
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I
>

A cos(ade(m)) cos{A¢) :PSK

i

Al(t;m)

"
>

AQ(t;m) A sin{a¢c(m)) c(m)sin(a¢)

AI(t;m) = A cos{awtec(m)}) = A cos(awt) :FSK

AQ(t;m) = A sin(dwtec(m)) = A c(m)sin(awt) (33)

and
551(t) = AI(t;m=0) - Al(t;m=1)

"

0

R T A

Aéo(t) = AQ(t;m=0) - AQ(t;m=1)
2A Sin(A¢)wT(t) :PSK (34)

"

AL = él(t;m=0) - AI(t;m=1)

sl
=0

[ B P

8, " AQ(t;m=0) - AQ(t;m=1)

%; = 2A sin(aut)n(t) :FSK (35)
;
f’. The Fourier Transforms are
;
SAI(m) =0 :PSK or FSK
sin(w%)
SAQ(m) = 2 ATsin{a¢) T :PSK
[l\ry
2
s (w) = /72 2A sin(awt) e 3%t :FSK (36)
5Q -1/2

Then, the numerator of the argument in (28) is

. sin?(ws)
15,(8)12 = (2AT sin(s4))? ——32 :psK
(D)2
= /72 A sin(aet)e 9t )2 . FSK

-T/2
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The FSK result may be shown to be

ISAQ(“’)IZ = 4A2[;T1A—w sin(w + Aw)% - _"L" .

sinu - Am)%]z . FSK (38)

It can be shown that both the PSK and FSK spectra decay as 5} for

large w. Thus, any difference in performance (as observed in the following
section) is not due to the high frequency behavior of the spectra. Or

such is the conclusion to be drawn from the simplification of (28),
Therefore the performance difference must be explained by the detailed
behavior of (25) in the frequency region of the main bodies of the signal
spectra.

3. IDEI DETECTION OF DIFFERENTIAL PHASE SHIFT KEYING

Another type of signal modulation for which comparisons between IDEI
and standard detectors were desired is the Differential Phase-Shift-
Keyed (DPSK) signal. DPSK was first described as a technique used in the
Collins Kineplex system [8, 9, 10). Kineplex actually embodied techniques
which later were analyzed and characterized as DPSK, Quadri-phase, and
L-Orthogonal Signalling [11].

DPSK was an ad hoc development to circumvent channel perturbations
of the phase reference required for coherent detection of PSK. It was
based on the premise of a slowly varying phase disturbance process with a
time constant (inverse bandwidth) much greater than one symbol period.
Under this assumption, the next previous symbol may be used as the phase
reference for detection of the present symbol. The channel which best
fits this model is the HF channel, for which Kineplex was designed. Many
channels do not fit the model, such as the aeronautical data-link channel,
subject to Earth-reflective multipath.

The DPSK signalling scheme is to reverse the signal phase between
previous and present symbol if the present symbol is a "1" and not to
reverse if the present symbol is a "0". Let m(j) denote the signalling
symbol (waveform) on the jth time period and n(j) denote the information
symbol (bit) on the jth time-period. Consider the truth table of Table 1.
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TABLE 1
TRUTH-TABLE

m{j-1) m(j) Reversal n(j) m(j-1) Hm(j)

0 0 No 0 0
0 1 Yes 1 1
1 0 Yes 1 1
1 1 No 0 0

Table 1 shows that the classic DPSK signalling scheme is identical to
differential encoding of the signalling symbols. That is, for DPSK it is
true that

n(j) = m(j) b m(j-1) (39)

Since (39) describes classic DPSK, it is obvious that D®SK may be
detected either coherently or non-coherently. When detected non-coher-
ently, the detection algorithm must consider data over two signal symbol
intervals in order to make the decision as to whether or not a phase tran-
sition occurred. When detected coherently, each signalling symbol may be
detected individually and the information symbol decoded from (39). 1In
terms of sampled-data processing, it is obvious that coherent detection
of DPSK may be implemented recursively. Non-coherent detection may need to
store all the data samples from the preceding signalling interval and may
or may not be implemented as a recursive process.

The question of whether to implement coherent or non-coherent detec-
tion for DPSK depends on the type of channel involved and the performance
of the detector in that channel. For a standard DPSK detector, a non-
coherent scheme should be used since DPSK was invented to overcome the
short-comings of the standard coherent PSK detector. For the IDEI detector
in its present stage of development, detection must be coherent. This is
because the present IDEI detection algorithms are coherent algorithms.

st

g+ 4kt
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It was not a task of the present contract to derive IDEI algorithms on
a non-coherent basis.

It has been shown [12], and will be documented below, that the coher-
ent IDEI detector for PSK operates well under heavy aeronautical multi-
path conditions. It was previously shown in a NASA investigation of the
IDEI detector [3] that using a very unstable phase reference derived from
the multipath channel does not change the error rate from that caused by
the multiplicative noise effect on the data itself. This is because the
phase rotation process is itself a vector multiplicative noise and is
absorbed in the multipath multiplicative noise model. What this all means
is that the IDEI error rate for DPSK can be obtained using coherent symbol
by symbol detection and decoding according to (39).

It should be noted that a single isolated error in detecting one
signalling symbol, m(j), produces a pair of errors in the information
symbols, n{j) and n(j+1). If it is assumed that IDEI detection errors for
PSK occur independently and singly, then

Popsk(e) = 2 Ppeyle) : IDEI detection (40)

The goodness of this assumption is tested below in the section on perfor-
mance results.

4. CLOSED-FORM ERROR RATES FOR STANDARD DETECTORS

a. Coherent Detection

In the course of the analyses of the error rate performance of

the IDEI detector, it was desired to make comparative analyses between it
and standard detectors, designed for white noise interference only. It
was desired to make these comparisons not only by Monte Carlo simulations,
but also by numerical solution of closed-form expressions for the standard
error rate.

For binary phase-shift-keying, PSK, there is only one standard
detection technique, which is a coherent one. This detection scheme is
characterized as a "Correlation Receiver," or "Matched Filter". It is
loosely referred to as an "Integrate and Dump" detector. For binary fre-
quency-shift-keying, FSK, there are two standard detectors, one coherent
and the other non-coherent. The coherent scheme is used when there is no
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difficulty in deriving a carrier phase reference. If carrier phase is
not assumed derivable, then the incoherent FSK detector is used.

For high signal to noise ratios (low error rates) the performance of
the coherent detector is about 2.5 dB better than that of the non-coherent
detector [11]. For purposes of comparing the IDEI performance to standard
detector performance for FSK, the best standard detector is chosen, which
is the coherent one.

From [1], the sufficient statistic for coherent detection is

K 1
o= 12100 [atks0) - (k1)) (1)

where z(k) and s(k;m) are as defined in (1). The decision rule is

v §$ 0 (42)

The probability of error, P(e), for coherent detection is

P(e) = Pr{[0 < v, m=1JY [v < 0, m=0]} =

= %{f” plu{m=1)dv + f‘_’m p{vim=0)du] (43)
0

assuming that the occurrences of m=1 and m=0 are equally likely. The
density, p(ulm), is Gaussian and is described by the K-sample conditional
means and variances of wv.

, Substituting the defining relation for z(k), of (1), into (41) yields

K
v = kZ][A(k:m) + y(k) + n(k)17Ta(k;0) - a(ks1)] (44)

Since y(k) and n(k) are zero-mean, then

K .
E(ulm) = k{]gT(k;m)[g(k;O) - o(ks1)] (45)
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It is assumed that the "energy" of 4(k;1) and &(k;0) are equal so that

K o K :
kZ]_A_‘(k;O)A(k;O) 2 T(ks1)s (k31)  (46)

Then .
E{u|m=0} = -E{u|m=1} & (47)

The variance is given by

var{ujm} =
kK X T T
.21 kZ][g(k;o) - a(ks1)] ELy(k) + n(k)I[y(3) + n(3)1"} -
J= =

[4(350) - 4(3:1)] (48)

Thus, it is seen that
var{u|m=0} = var{u|m=1} & &2 (49)

In (48), the expectation is the 2 x 2 autocovariance of the sum of
the 1-Q vectors of white noise and colored noise. Since y(k) and n(k) are
zero-mean and independent, (48) may be rewritten as

K K
= . - . T -9 -9 .
var(olm = 31 Ta(ki0) - s DTy (ked) + Vo (k:3))

[4(3:0) - 4(351)] (50)

where Vnn(k-j) js the 2 x 2 white-noise variance given in (1). Assuming
that y(k) is the low-pass I-Q vector resulting from a stationary band-pass
process, then Vyy( ) has the form

V.. v. ()
Vol )= i) Vgl )J (51)
'Viq( ) Vii( )

If the continuous-time bandpass process has a power spectrum which is
even-symmetric about the signal carrier frequency (demodulation reference
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frequency) then Viq( ) = 0, identically. See Section IV for details.

From the above, then, the probability of error for coherent detection
is given as

] F

where erf( ) is the tabulated “"error function". It is desirable to write
P(e) in terms of the ratio E/No where E is the energy of the continuous

time signal waveform in one symbol period and No is the spectral density
of the continuous-time white noise, n(t). The continuous-time version of

(52) is
1. erf[/l_ (53)

P(e) = %
where p is the correlation coefficient between the two possible signal
waveforms. For PSK, p = -1. For FSK, p = 0.043 for A¢ = 0.785. Thus,
p = O These results may be obtained from the defining integrals, p =

1 fo_ (t m=1)s(t;m=0)dt, where E = fo_ (t m=1)4(t;m=1)dt and the s(t;m)
are given in equation (33).

In order to tabulate results for P(e) as a function of E/No, the iden-

tity is made

ekl (54)
o Y2

This leads to setting the level, cﬁ, of the whiie noise variance, V

nn
according to

02 = S'LSAQ!'K (55)
n E/No

where S is total carrier power, K is number of samples per symbol, and
L(Aa¢) is a modulation loss factor of the modulation index, a¢.

L(a¢) = sin2(a¢) :PSK

K
. o2n 1 .
2 kz]s1n2(2— (k-f)A¢) :FSK (56)
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Note that by using (55), E/N0 becomes the ratio for the actual signalling
energy which, for low index modulation, does not include the energy left
in the residual unmodulated carrier. Comparison of performance between
differing modulation types (PSK or FSK) is done on the basis of equal
symbol E/No. Thus, the white noise variances, oﬁ, may not be equal, if the
modulation loss factors differ.

Letting J denote the power of the colored process y(k) (in band-pass
form) and BJ the one-sided equivalent noise bandwidth of the low-pass I-Q
process, y(k), an equivalent white spectral density, NJ, for the colored
process is defined by

J=N, 2B (57)

Then the total equivalent white noise spectral density for the standard
detector is '

N. = No + N (58)

T J

where N0 is the usual white noise density.

The total signal power S is related to symbol energy, E, and symbol
period T by

E = S.T-L(a0) (59)

where L(a¢) is modulation loss factor, defined in (56).

Thus
S = mfiﬁ (60)
and
3° L(A¢)-TFNJ-2 B, (61)
Now, B
Ean, = €= () - L(ae) - (2 3N, (62)
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where R is symbol rate. Thus

Tt - ) By O
and
Ny = Ny * Ny
' (E/N )
e —0 . (nﬁ—)i] N (64)
~ o L(ag) - (35—) 5 °
Thus
B
%_ -—F F = L(A¢)-(§)-(2 ﬁi) (65)

F

Knowing all the quantities in F, (65) may be substituted for E/No in (53)
to compute the standard coherent detector error rate when the colored noise
process is of much greater bandwidth than the desired signal.

b. Non-coherent Detection
In order to have a fair comparison between the IDEI and standard

detectors for DPSK, it is desirable to use a non-coherent version of the
standard detector. Thus, it must be determined whether a closed-form
error rate expression can be obtained for the sampled-data, non-coherent,
DPSK standard detector.

The model for the received data, z(k), is somewhat different that
that of (1). Here, the data is described by

z(k) = H s(ksm) + y(k) + n(k) (67)

Ji where y(k) and n(k) are the noise terms of (1). The term H0 is a two-by-
two rotation matrix given by
cos¢0 sing ]

Hy=| % (68)
-s1n¢° COS(1>0
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where ¢ is taken to be a uniformly distributed random phase angle due

either to the channel or to a completely unknown detection phase reference.
The modeling of ¢o as a uniformly distributed random constant results
from the physical assumption that the phase perturbation on the received
I-Q signal components is very slowly time-varying with respect to the
symbol period.

For DPSK, the signal vector is given specifically by

-
| cos[c(k;m A¢]

slksm) = i i l ) . .
i sin[c(k; m)A¢]j ' c(ksm)-sin(ae)
- L

where A¢ is carrier phase deviation in radians and c(k;m) is the value of
the square modulating waveform, given as

1

cos(A¢)

(69)

N

c(kym) = -1 : m=20
= +]1 m=1 (70)

Letting j denote the present symbol number (or period) and j-1 denote
the previous symbol number, it is seen that

[H (ksm)]" [H, 84 (ksm)] =

0 J -1
= cos?(8¢) + c;_q(ksm)e,(ksm)sin?(a) (71)

For the case of no residual carrier where A¢ = w/2, it can be seen that

the expression of (71) has the value +1 when there is no phase transition
between symbols and the value -1 when there is a phase transition. Thus,
it can be seen that DPSK can be detected non-coherently on a sampled-data
basis by forming the sufficient statistic

1 K
" L 2502500 (72)

where gj_](k) are the data-samples (2-vectors) from the previous symbol
interval and gj(k) are the data-samples from the present symbol interval.
The decision rule is
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n(g)=0
n(3)=1

V)

T (73)

where T is the decision threshold given by
T = cos?(a¢) (74)

Unfortunately, the statistic v is not Gaussian, due to the cross
products between the noises y(k) and n(k) on the previous and present
periods. The probability of detection error for the non-coherent DPSK
problem has only been solved exactly for the continuous-time formulation
with uncorrelated (white) noise [8, 10]. The exact closed-form solution
for colored noise, as y(k) generally is, on a sampled-data basis is not
to be dealt with, further, here. Thus, the obvious precision approach is
to simulate non-coherent detection algorithms and obtain the exact error
rate performance of the standard detector empirically.

Also unfortunately, the non-coherent detector defined by the algo-
rithms (72) and (73) is not recursive. It requires storage of received
data points for an entire symbol period. A recursive algorithm may be
implemented which requires storing only one statistic from period to
period. This is the angle-estimating algorithm, based on [13]. From
(67) - (69), it follows that in the absence of noise

2. (k) cos[ag-c(ksm) - ¢ 1" 75
z(k) = [z;(k)J [ OJ 7

sin[ag-c(k;m) - ¢ ]
where use has been made of the fact that

sinfag-c(ksm)] = c(k;m)sin(as)

cos[a¢ec(k;m)] = cos(ag¢) (76)
Thus, without noise

z (k)

2,07 tan[A¢;$k;m) - 9] (77)
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Now define the discrete-time version of an "integrate-and-dump"
matched filter as

1 K
(k) = L 2y(6)

-_—

K
Mq(K) ¥ kZ]zq(k) (78)

Define a statistic for the jth symbol interval as

M (K)
S(j) = arc tan’ ﬁgT?Y-Jj (79)
1

where _Jj denotes that Mi( ) and Mq( ) are computed during the jth
interval. In the noiseless case

s{j) = A¢-cj(k;m) -4, :  Nonoise (80)
Assuming % is constant over two symbol periods

S(3)

S(3-1) = aele,(ksm) - ¢y (kim)]
20 cj(k;m) =1, cj_](k;m) = <]

]

-24¢ : cj(k;m) = -1, cj_1(k;m) =

0 : cj(k;m) = cj_](k;m) = ] (81)

Thus, denote a test statistic over two periods as o
'S = |S(3) - S(3-1)] - ae (82) -

The decision rule is

n(j2=1

S 2
n(j)=0

0 (83)
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5.  THE UNIFORMLY MOST POWERFUL PROPERTY

In this section it will be shown that for a broad set of conditions
it is not necessary to identify the strength, or scale, of the received
signal, 4(k;m). From (1), the received data is

z(k) = s(ksm) + y(k) + n(k) (84)

where s(k;m) is desired signal, y(k) is colored noise, and n(k) is white
noise. Now, the scale, or amplitude, of 4(k;m) is not known, A Priori.
Only the possible waveforms of s(kim) for m = 0, 1, are known exactly.
Thus, the reference signals for the optimum receiver of Figure 2 should
generally be éé(k;o) and 5éjk;1) where a is the estimate of received signal
strength. It is shown below under what conditions the probability of
error is independent of a.

From (11) the probability of error for the IDEI detector is given by

|
P(e) = E{1 - erf(;%;)] (85)

From Lemmas 2 and 3 of Appendix B it may be shown that the mean, u,
and variance, o2, given in (7) and (8) and used in (85), may be written as

K
T'- = m= =
b Z][g$(k,m-0, n l)gt(k,m 0, n=1)

p =
k=
- gl(k;m=0, n=0)gt(k;m=0, n=0)]
K K
02 = 4(b%2 + (b')2) § Y v (§-k)[e, (jsm=0, n=0)
=1 k=1 %6 s

- &, (5m=0, n=1)1"[g, (kim=0, n=0) - ¢ (kim=0, n=1)]

(86)
In (86) b and b' are the diagonal term and super diagonal term, respective-
1y, of the 2 x 2 inverse variance matrix of the identified Innovations
process (V;} in (8)). Ugg(j—k) is the diagonal term of the 2 x 2 pseudo-
innovations autocovariance matrix. v E(j-k) is a scalar function.
The quantities, gt(k;m=i, n=j) are the transient error response
(error residuals) of the Kalman (Wiener) filter to a driving signal
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S;5(K) = (kim=i) - as(kin=j) : i, jc (0, 1)  (87)

Now denote
em=i n=i) 4 B
e, (ksm=i, n=j) g,—j(k) (88)

The steady-state Kalman filter, which is just a particular canonical form
of the Wiener filter is described by

g"ij(k) = §-1:|(k) = Aﬁﬁj(klk']) (89)

iij(ljo) ) ¥ i, j : zero initial conditions

where ¢* and G* are the transition and gain matrices, respectively, for
the identified Wiener filter.

The solution to (86) is obtained as

‘- kel k-1-2
iij(klk']) = J  [e*(I - G*p)] ¢*G*§1.J.(£)

(k) = 5. (k) - T arex(r - ex) 1K Lerers, (2) (90)
91‘3’ ® 245 - 2 Afo* (1 - G*A 2ij

It is shown in Appendix B that the quantity A[e*(I - G*A)]k']'e¢*G*
has the canonical form

A

f(k, £) f'(k, e)i
f'(k, £) f(k, z);

ALox(1 - 6xn) 1% Longr - (91)

r

To evaluate (86) requires the signals, §00(k) and §0](k). For binary
PSK or FSK (coherent), the signal vectors are
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rAI(k)
s(k;m=0) = [
4Q(k)J
k—‘
(i) = | 1
-5tk
where
AI(k) = A cos(a¢) :PSK
= A cos(Awtk) :FSK
sQ(k) = A sin(a¢) :PSK
= A sin(Awtk) :FSK

(92)

(93)

The quantities A¢ and Aw are PSK phase deviation and FSK (radian) frequency
deviation respectively. The quantity, tk’ is sampled time value, given by

1
K - =
b, = —2 T

(94)

where k is sample number, K is number of samples per symbol, and T is sym-

bol duration.

Then, )
Spolk) = a(ksm=0) - as(k;n=0)
_ [21-3)41(ki}
[(1-a)sq(k
Sg1(k) = s(k;m=0) - ag(k;n=1)

L[ -2de)
| (1+2)s(K)

It follows that

3

e T R

(95)




k-1 _
spk) = T [F(k, £)ag(e) + £1(K, £)35(2)]

egok) - ("5)i k-1
LAQ(k) - ez] [f(k, K)AQ(Z) - f'(k, L)Al(z)]
. k-1 . . '
(]-a)AI(k) = Z [(]'a)f(k’ t)bl(z) + (]+a)f.(ks z)éq(l)]
egy (k) =

(1+a)dy (k) - z [(1+2)f (k. £)ag(e) - (1-2)f"(k, £)s(0)]]

(96)
Next, the results of (96) are substituted into the expressions for u
and g2, given in (86). These expressions are rewritten as

u=o>b 2 [e ](k ](k) - _Oo(k)e O(k)]

K K

4(b2 + (b')2)
jZ] Z] 12

- [ego(k) - gy (k)] (97)

(3-K)egyd) - e (T -

Q
N
1l

Substituting (96) into (97) yields for the u-term,

K k-1
=b ¥ (4 (k) - 7 flk, £2)s,(2)]2 +
Z a[AQ £Z1 ( )AQ ]

k-1 . .
+ LI f(k, 2)s(0)10401- a)aq(k) +(3a2 - 42 +1) .
K—
k-1 k- .
J flk, £)s Q(z)] - Z f'(k, 2)sg(2)I[2a(1-a)s (k) +
251 £=1
. k-] . k_-l
+ (322 - 2a - 1) § f(k, 2)s (L) - 4a2 § f'(k, z)oo(z)]}
£=1 2=1

(98)
The result for o2 is
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- K K
o = 4(b2 + (b)2)(4a2 § T Jkuzf(h )3q(d)) -
3=1 k=1
k-1 j-1
+ L (K Ds(k) + Lagld) = T 705, 2)agle)) -
k-1
¢ (aglk) = T Flk, )sgleN)]) (99)
£=1

It may be seen from (98) and (99) that in the argument —-- , the a
V20

factors will cancel only if f'(k, £) = 0, identically. This latter will
occur only if the Wiener filter is structured in the form where the I and
Q states are uncoupled. Note that the restriction is not that the I and Q
terms of the colored noise process, y(k), be uncoupled (spectrum symmetric
w.r.t. signal carrier frequency), but only that the filter be structured
for uncoupled I and Q processes. In case the y(k) process represented a
one-sided interference spectrum, the uncoupled Wiener filter would not be
optimum and some penalty would be exacted for the additional white noise
admitted to the filter. However, in order to retain the Uniformly Most
Powerful property, the possible SNR penalty must be accepted.

If it is assumed that the Wiener filter is always structured for un-
coupled 1-0 processes, then b' = 0 and the dependence of the argument £

on b also disappears. Thus, the final argument becomes /20
k-1
- 2
L 2 IAQ(k) Z f(k, £)8,(2)]
V2a K K - k-1
/2 } zuwu«n%U)-z (35 2)aq(DNegll) = T ¢k, Dagl2)]
J':] k=1 £2=1
(100)

Thus, under the conditions stated, P(e) is independent of 3. It should

also be noted in passing that the argument ;Ef also has no dependence on
20

the in-phase signal component, AI(k). This is reassuring since AI(k) con-
tains no information concerning the message symbol. It should be recalled
that the only reason for allowing Al(k) # 0 was to maintain an unmodulated
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residual carrier component for anti-multipath (multiplicative noise)
detection.

Retention of the UMP property is most desirable, since it alleviates
what would otherwise be a most difficult requirement to satisfy, identifica-
tion of the desired signal strength in the presence of possibly stronger
interference. Use of the UMP property may, however, conflict with identi-
fication of the colored interfering process, depending on how such identi-
fication is implemented. ML identification, which is described in the
following chapter, is achieved by processing the pseudo-innovations, or
tracking error. With an improperly scaled signal waveform reference,
ig(k;n), the tracking error is perturbed and may cause error in the ML
identification. However, if the ad hoc identification method, alluded to
in Chapter IV, is employed, then UMP-induced identification error may not
be as significant, since detection error rate is later shown to be quite
tolerant of ad hoc identification error. An exact characterization of the
identification error induced effects of using the UMP property requires
further research than has been performed to date.

The UMP property was shown to obtain for a class of signal structures
of the form of {92). PSK and FSK happen to belong to this class, as do
PAM signals, also. The requirement to implement the tracking filter in
uncoupled form is not critical since the only effect is to allow some ad-
ditional white noise into the filter. The worst effect would be a 3 db
degradation for a truly single-sideband interfering signal.
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SECTION III

MAXIMUM LIKELIHOOD IDENTIFICATION
OF IN-PHASE/QUADRATURE VECTOR PROCESSES

1. THE 1-Q CANONICAL MODEL
To examine the statistical relations for the In-phase and Quadrature
low-pass processes, consider the bandpass formulation, thereof. Define

a bandpass Gaussian process, y(t), as
y(t) = yi(thcosu t -y (t)sine t (101)

which has power spectral density, Syy(w). The power spectral density is the
Fourier transform of an autocorrelation function, Vyy(T), and is therefore
real, positive, and an even function of w. However, note that the density
need not be locally symmetric with respect to the frequency, W -

Now, yi(t) and y (t) are the low-pass Gaussian In-phase and Quadrature
components of y(t), respectively. Assuming that y(t) is zero-mean, then
yi(t) and yq(t) are zero-mean and completely described by their autocorre-
lation and cross-correlation functions, vii(T)’ V (1), and v i(r). For

y(t) to be stationary it is necessary and sufficient for [14]

v.i.i(T) = Vii(-T) qu(T) = qu("T)

'ti(“T) (102)

-<
—_—
—
~—
i

Viq(-r)

That is, Vii(T) and V_ (t) are even functions and ti(r) is &n odd function.
Note that it is not regquired for yi(t) and yq(t) to be orthogonal (or
jndependent).

The power spectral densities for yi(t) and yq(t) are defined by the
Fourier transforms

S;i(w) = F{v (<)}
sqq(m) = F{qu(r)}
Sqi(w) = F{vqi(T)} (103)




" Since Vii(T) and V_ (1) are real and even, Sii(“) and S (w) are real, even,

and positive. Since V 1.(r) is real and odd, Sqi(w) is imaginary and odd.

X []:gw, Sii(w)’ Sqq(m), and Sqi(w) may be determined directly from Syy(w)
Y

w
—
€
~
1]

i Syy(wc+w) ] (mc+w) + Syy(m-wc) U (wc-w)

Sqi(w) = j[Syy(w-wC) U (wc—m) - Syy(wc+w) u (wc+m)]
(104)
where U( ) is the Unit-Step function defined by
Ux) =1 3 0=<x
=0 3 x<0 (105)

Figure 3 shows the various spectial relations from (104) for a hypotheti-
cal non-symmetric bandpass power spectral density. Note that if S (w)
were locally even symmetric with respect to the frequency, Wes then Sqi(w)
would be identically zero. Hence, V 1.(r) would be identically zero (limit-
ing case of an odd function). Thus, yi(t) and yq(t) would be orthogonal,
uncorrelated, and independent (since they are Gaussian).

If yi(t) and yq(t) were independent, they could be identified indepen-
dently, using Single-Input-Single-Output (SISO) identification techniques.
Unfortunatley, in general, the Doppler spectra or additive colored inter-
ference spectra are not locally even symmetric. Thus, in general, yi(t)
and yq(t) are correlated, and Multi-Input-Multi-Output (MIMO) identifica-
tion must be used.

For the present problem, the I-Q Generator Model is the stationary
version of a linear discrete-time invariant system. System parameters are
assumed to be constant or so slowly time-varying that they may be taken as
constant for the purposes of recursive identification. This means that
the elements are constant over the interval of time corresponding to the
memory of the identifying algorithms,

Thus, the I-0 model is defined by the equations

x(k+1) = 0 x(k) + rw(k)
(continued)
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H

y(k)
z(k)

Ax(k)
y(k) + n(k) (106)

Now, y(k), n(k), z(k), and w(k) are all 2-vectors. In terms of the I-Q
formulation, they are defined by

y() =y n(k) = (n,xkf,
L] Lng(®) ]
2(k) =Tz ulk) = (k)
qu(k)_] |_w _E (107)

Both n(k) and w(k) are independent, zero-mean, white and Gaussfan.
It is assumed that yi(k) and yq(k) are each Markov-N. Thus, the state-
vector, x(k), must have 2N state (system order), and the obvious defini-
tions follow:

Cx. (k) ; 'y
<(K) IL— . ,f ]
Xq(k) L*ai 1 %a
. T .7
Yii ! Yiq : Aij 1 Ayq
= - = = e A - —— = -
T +.7
As o1 A 10
Tt | Xaq “qi | “ag (108)
where the x. (k), ( N Yii* Yiq® Yqi’ Ygq* 2 i Mg Agi” and Agq e all
N-vectors. The ¢ii q1’ and ¢qq are each NxN matrices.

The major emphas1s of the modelling is to find the system parameters
for the colored radio frequency interferences and/or the complex Doppler-
spreading process so that the systéﬁ produces a given output covariance
function. This system must satisfy three system properties.

(1) The stationarity of the 1-Q process.

(2) Markov-Gauss process.

(3) Output statistics
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The output covariance relations for the general models are

E{z(k+j)z(k)}

V__(k+j, k)
Z2Z ] T
AVxx(k+J, kA + Vv

- (109)
where

= 2
Vnn onI

2x26jk
From the Markov process, the covariance of the state, Vxx(k+j, k) is given
by '
V. (k+1, k+1) = ov_ (K, K)o' + rr'
XX ’ Xx*?

ik = oI
Vo (k3 k) = ooV (K, k) (110)

It may be assumed without loss of generality that w(k) has unit variance.
It is assumed that the generator has reached steady-state and that x(k)
is stationary. Under these conditions, equations (108) and (109) become

. _d T
sz(k+J, k) = Ao VXXA + vnn

_ T T
v = ¢Vxx¢ +IT

XX (1)

Now, the requirements of equation (102) are that for yi(k) and yq(k) to be
low-pass I1-Q components, it must be satisfied that

v (keds k) BV (5) = [Vii(j) Vigld)]

2z
LYqi(j) qu(j)J
V., () = qu(j) ; an even function
Viq(j) = 'Viq('j) = -ti(j) ; an odd function (112)

The canonical modelling problem is to choose a structure {r, ¢, A}
for the data generator such that the number of non-zero elements is minimal.
So far as realization of a specified output autocovariance matrix is con-
cerned, I and A are redundant. That is, one or the other of T and A may be
fixed and the remaining matrix varied to realize the autocovariance. In
the present model, A is fixed and is therefore known, A Priori. By Theorems
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1,2, and 3 of [16], the generator structure is given by

BEEAE Lo
NN Lty
Al g
L
[0 2] (113)

where y, y', and ) are all N-vectors and ¢ and ¢' are each NxN symmetric
matrices. '

This system structure was derived by continuous-time modelling since
time is a parameter in (101). This system structure of (113) satisfies
the continuous-time model for the stationary I-Q process. The relation
between the continuous-time model and the discrete-time can be found in
[16].

The system equations are given as follows.

' r T
x(k+1) [: ﬂ x(k) + |i iJ w(k)

L
-
'AT 0
2(k) = | x(K) + n(k)
0
where -
E{w(i)w(j)} = 185
E(n(i)n(j); = o218,
Eqw(i)u(j)} = 0 for all i, j

and ¢ and ¢' matrices are assumed to be
¢ by
Q:!-] 0 ¢' :[‘1 0
; ¢2\ ¢2|
¢ o
P ™
1

T )

xo=(1, 1, ...




Figure 4 shows the partially decoupled system where Z denotes the
jutaposition matrix.

The steady-state Kalman gain, G, and the innovation variance corre-
sponding to this system have the following structures, as shown in Appendix

B.
g.gq v w7}
I e N A A
-g'' g vV -t J (116)

where g and g' are each N-vectors. When the output spectrum is symmetric,
then the off-diagonal blocks of (112) and (115) are zeros.

2. DERIVATION OF THE MAXIMUM LIKELIHOOD ALGORITHM

Maximum Likelihood Estimation was introduced into statistics by R. A.
Fisher in 1906. It is probably the most widely used method for estimation
in statistics. The vector of unknown parameters {¢, T, Vnn} of the system
is denoted by g. The maximum 1ikelihood estimate of 8, given a sequence

of observations, z(1), z(2), ..., z(K) is given by
8 = max p(Z(K)|g) (117)
8
where Z(K) = {z(1), z(2), ..., z(K)}
and
p(Z(K){g) = conditional probability density function of Z(K)

given 8.
(118)
The method of maximum likelihood consists of finding that value ﬁ of para-
meters which is "most likely" to have produced the data.
An expression for p(Z(K)|g) is derived as

p(Z(K)|g) = p(2(1), z(2), ..., z(K)|B)
p(z(K)]Z(K-1), g)p(Z(K-1)]|B)

p(z(¥)|Z(K-1), g)p(z(K-1)[Z(K-2), B)p(Z(K-2)|8)

=

p(z(k)|Z(k-1), B) (119)

n
=

k=1
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p(z(k)|Z(k-1), 8) is Gaussian since w(k) and n(k) are Gaussian and the
generator is linear. Therefore, the density function, p(z(k)|Z(k-1), 8},
is completely characterized by the conditional mean and variance.

E{z(k)|Z(k-1), g} = z(k|k-1, B)

E([2(k) - z(k|k-1, 8)I[z(k) - z(k|]k-1, 8)1T)2(K-1), 8)
= E{v(k, _B_)vT(k, B)|Z(K-1), 8} = Vw(k, 8) (120)

where v(k, g) = z(k) - z(k{k-1), ). wv(k, g) is the Innovation process
and Vvv(k, 8) denotes its variance.
The negative log-cost function, J(B), can now be written as

J(B) = -log p(Z(K)|g)

! EfT(k Wk, e)v(k, 8) + 1oglv™) (k, )]}
2k=]3 "'B_\J\),"‘X s B g\)\)"‘ i

(121) L
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The problem of determining the ML estimate has now become one of find-
ing a way of calculating the conditional mean, z(k|k-1, g), and the error
variance, Vvv(k, B8). The quantities can be obtained from a Kalman filter
state estimate given g. Mote that the ML estimation process is identical
to the MAP detection strategy so that this ML estimation is imbedded in the
detection algorithm. The Kalman filter algorithm is the fpllowing

X(k|k=1) = oX(k|k-1) (122)
vk, 8) = z(k) - AX(k]k-1) (123)
X(k|k) = X(k|k-1) + G(k)v(k, ) (124)
and
U (k[k-1) = q,v;&(k-1|k-1)4>T st | (125)
v, (ks B) = AV?&(klk-l)AT - (126)
6(k) = Vo k| k-1)ATV! (K, g) (127)
Vg (klk) = (T - G(K)A)Vyp(k|k-T) (128)

In the steady state, equations (125) - (128) are also in steady state and

a real-time computation is not necessary. Therefore, the ML estimation

is to find v(k, B) which minimizes the cost function, J(B), with respect

to g since the logarithm is a monotonic function. This is a very difficult
"""" non-1inear problem because of the constraints in the Kalman filter equations.
In the steady-state, the filter gain, G(k, g) and covariance, Vvv(k, 8)
have reached constant values G and V . The vector g of unknown parameters
is now defined to include G and VW instead of Vnn and T since the latter

are subsumed in the former. Then

T

J(g) =% {v (k, ﬁ)V;ly_(k, 8) + loglv [} (129)

He—-1x

where k=1

B = unknown parameters in {¢, G}

Once g is estimated, then r and Vnn may be obtained from (125) - (128) ;f
desired. When the numbers of unknown parameters in g and in Vnn and T L
are identical, it may be possible to use g to solve for unique estimates
of the unknowns in Vnn and rrT. Otherwise it is not.
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The cost function can be minimized with respect to Vvv to give

K A )
V=% Toulk, B (k. B) (130)

v k=~l
where é is the ML estimate of unknowns of ¢, G. Substituting this value
in cost function (129) we have

J(é) = % log [Vvvl + constant (131)

This function can be minimized using the gradient methods, referred to as
the Newton-Raphson method. The separation between estimating g and VW
is not as complete as in the SISO [17].

The cost function has multiple maxima, saddle point, discontinuities,
and singular Hessian in parameter space, in particular, a large number of
unknown parameters. The application of the gradient method for this diffi-
cult non-Tinear programming problem causes extremely slow convergence,
divergence, or convergence to a wrong stationary point. Thus, good
jnitialization is important to ensure caonvergence to the absolute maximum.
This is analagous to the "acquisition" problem for any non-linear tracking
estimator.

The basic iteration in gradient-type non-linear programming methods
is

Bivy = By - 0By = By - PRy, (132)

where Aﬁﬁ is the step size and ﬁi is the unknown parameter vector at the

ith iteration 9; is a vector of gradients of the cost function J(g), i.e.,

Q. = (133)

[+%)

™
e}
t
=)

Ri is an approximation to the inverse of Hessian matrix:

-— .-]_‘]

32d(g) '
= | (134)
£ = B |

R,
1 I 3_&2

44




R

b i AR o TP SR

T

Loz o DUDEZF RN A A A b e gt ey ¢ S s st ks s e e R Yri bt 4 e m
!
:
¢

and pi is a scalar step size parameter chosen to ensure that J(§4+1) <
d(gi). The main differences between many non-linear programming schemes
is in selection of Ri’ and in some cases P, and Qi [18].

The first gradient of the cost function, J(g) is

3d(g) K au(k, g)
= hT(k, v (135)
g k=) YW oo

Generally, the computation of the Hessian matrix is not desirable since

it is very expensive to compute the extra terms and may not pay off in terms
of the improved convergence rate. Instead one chooses Ri as the inverse

of the Fisher information matrix Mi where

323(g) [aa(_ﬂ 20(g) T
My = E}‘ =E - J
8 38
(136)

, 2
B g =,
The expectation is taken over the whole sample space. Mi is a nonnegative
definite symmetric matrix. This technique is called by modified Newton-
Raphson, quaslinearization. Mi is oenerally estimated from the samples as

)
’
J

- K aﬁ(k, _B_) T -1 al{(ka E)
Mi(n, m) = Y |— Voo ——— (137)
k=1 L ag(n) ag(m)

where 8(n) is the nth component of the 8 vector. A more exact expression
for 9; and Mi can be found in [18, 19] but in general the extra calculations
are not worth the improvement in convergence rate. Note that the first
derivative J(g) with respect to B8 is needed to compute the approximate
inverse of the Hessian matrix. But the Fisher information method has a
difficulty when &i is singular. To avoid this difficulty, the step size

484 is decomposed by

P
7% (qu.)gj (138) A
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where AJ is an eigenvalue of ﬁ corresponding to the eigenvector v,. It
can be seen that the step s1ze in direction v may be very large for small
Aj. This means that, when M is nearly singular, the step size takes large
steps in those parameter direct1ons about which the least information is
available.
The rank deficient method is to use a psedo-inverse of M for R as
m-k
R= ] o vy I (135)

=1 7
where A, are the eigenvalues of M and uj are the corresponding eigenvectors
such that A1 > AZ >...>Am_k >b > Am_k+] >...>Am and b is a suitably chosen
3 threshold value.
Numerically, better accuracy is obtained by modifying (132) as

- m-k BT'ﬂi

It is difficult to find a proper value for p and eigenvalue threshold b.
Mehra [19] has suggested a modified rank deficient method but there are
no general rules to determine a proper b value, in particular, for a large
number of unknown parameters. Experimentally, when the initial values are
far from true values, b may be large enough to prevent the estimator from
diverging.

Now, useful computational steps for the gradient are obtained through
the "state sensitivity" for parameter 8.

Consider the following steady-state Kalman filter equations:

X(k|k-1) = oX(k-1|k-1) (1a1)
v(k) = 2(k) = AX(k|k-1) (142)
X(k|k) = X(k|k-1) + 6v(k) (143)

The gradient of v(k) with respect to ¢ (3 =1,2, ..., N) can be obtained
sequentially from (141) - (143) as

4R




aX(klk-1) _ . aX(k=1]k-1) , 30 X(k-1{k-1) (144)
2. Yy Yy
J J J
av(k) _ _, aX(klk-1) (145)
9d: . o¢ .
J ]
aX(klk) . (1 - GA) aX(k]k=1) (146)

where ¢. is an unknown parameter of ¢ matrix. So is the gradient of (k)
with respect to 9; (3 =1, 2, ..., N) given by

aX(k|k-1) _ , aX(k|k-1)
39,

(147)
39
J
3G. 9g.
J
—LJ-HX%; k - 6h) _L_lX(k k-] aff’ (k) (149)
h|

where gj is an unknown parameter of G matrix. Equations (147) - (149)
should be processed simultaneously and sequentially to solve the gradient

f v(k) with respect to B. Note that the number of unknown parameters are
2N which is a minimum,

For stationary I-Q process, the gradient of J(g) with respect to g
is simplified as

ad(B)

38 K

K . av1(k) (k)
kzl[v](k)u - vz(k)u ] — T + [v-l(k)u + v (k)u] _B_ f

(150)
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where rv](k) I N

\)(k) = and Vv\) |
vzt

The Fisher information matrix is

IEE{%%J w 38

K rav](k) avz(k) o Bv](k)
k21  38(n) 2g(n) ag(m)

M(n, m)

B\J](k) 3\) (k) 3\)2(!()
¥ [ as(n) aB(n) ag(m) (151)

When the system is decoupled, then (150) and (151) may be reduced as

J(8) K 3v; (k) a\»z(k)']

T k; \11(k) TR + vy lk vy ——J
and K Favy (k) oy (k) 3uplk) avy(k)

M(n, m) = ORI ORMETOEETIO! ] (152)
or ( )

K v, (k

BJa(El =y kz]\)](k) ;E
and K avy(k) avq(k)

M(n! m) = v

k=1 ag(n) ag(m) (153)

We may have some insight about the decoupled system and verify the innova-
tion variance cstructure. Fortunately, in the estimate of v it is not nec-
essary to compute (140) in the case of the decoupled system or (2x2) system
since it is cancelled in (140). Otherwise, the innovations variance should
be estimated first with a good initialization value and used in (140).
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The computational steps for the ML estimation are as follows:
(1) Assume inition conditions, g . p , and X(0{0)

(2) Compute v(k) = z(k) - AX(k|k-1) for k = N+1, ..., N4M
(3) Compute cost function associated with a priori parameter estimate

K
Mey) =% [ PRUCINICERCAVING

(4) Evaluate the sensitivity function sequentially and simultaneously
after M measurement and store these

3v(k) aX(k k=1)
ag' = _A ._.—_é?_
where
aX(kk-1) _ - aX(k-1]k-2) aF a0
"8 F g + X(k|k -1) + ﬁz(k -1) (154)
F = o[l - Gal
D = ¢G

(5) Compute the gradient of J(g)

N+M av(k)
ad(g) - v(k)V']

8 e Vo om (155)
(6) Compute the information matrix
N+M
R A OT
=N+ OB ""L 3 (156)

(7) Compute eigenvalues AJ and eigenvector u of M (A

(8) Determine the threshold value for e1qenva1ue Ao (\ LSS W

m
A1 o ron)
(9) Compute Rank deficient method
p ETjﬂi

(10) Adjust the scalar py to satisfy J(Bi+1) < J(Bi)

(11) Initialize i(klk) and 8, to 9o to step (2)
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In step (7), many of the computational difficulties with the rank
deficient method are involved with the large spread in the eigenvalues of M,
To avoid this inaccurate choice of - in step (8), Mehra [19] has suggested
that with a proper choice of Aps Steps (9) - (10) are done and the cost
function value is computed. This same procedure is repeated until m = 2N
and a g is obtained producing a minimum cost function value. This is called
the sweep rank deficient method. Experimentally, when the number of unknown
parameters is small, then Mehra's method improves the convergence rate.

But, with a large number of unknowns, this method does not work because of
the large spread of eigenvalues. Instead, fixing a threshold value for Am
is better even though the convergence rate is slow.

If the new cost is larger than the previous cost, the step size is cut
in half, setting P; in half in step (10). This same procedure is repeated
a given number of times. The reason for this step size cutting is the non-
quadratic nature of the cost function. Also, the constraint boundaries
for system stability are adapted to restrict the ¢ matrix.

The values of X(k|k) and 84
next M measurements.

4+ are stored to be initialized for the

To escape from the computation loop, the gradient of J(g) is used
instead of testing the whiteness of the innovation prbcess, which is fre-
quently used by many, since, in practice, the whiteness test may be ill1-
conditioned.

3. ESTIMATION PERFORMANCE OF THE M-L IDENTIFICATION ALGORITHMS
In this example, the actual system is given by

X(k+1) = oX(k) + rw(k)
z(k) = AX(k) + n(k) (158)
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where the numerical values are

.97 .1 [i.s 0.5
d = H T =
-1 .97 [;.5 1.5

M o
A=l
Lp ]

10
V= E{n(i)n(j)} = ].58[
0

] E{w(i)w(j)} = Idij (159)

nn 1

This system is a coupled (2x2) system. The true Kalman gain, G, for (159)

is given 1613064 , 0
G:
0 ., .613064

and the true innovation variance, Vvv, is given

6.45171 , 0
V =
vV 0 , 6.45171

For the (2x2) coupled system, the Kalman gain and the innovation variance
are decoupled.
Given initial values as

.99 .15 55 0
¢k = G* =
o .15 .99 0 n .55

the number of samples, K, is varied 100, 500 and 800.

The following Figures show the convergences for these three cases.
As we can see in Figures 5 -6 , the convergence of the Kalman gain is more

sensitive to the injtial guesses than the transition matrix. It will be
shown later in a (6x6) decoupled case that accurate initialization is re-
quired for the Kalman gain to ensure convergence. In Figure 6, the greater
K becomes, the smaller deviation the innovation variance has. The calcu-

lated v' for K = 800 is closer to zerc than K = 100. The cases of K = 500
and K = 800 produce 1ittle difference in convergence.

e
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Figure 5. Identification Convergence for Transition Matrix
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Figure 6. Identification Convergence for Gain and Innovations Variance
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Next, a (€x6) decoupled case is considered for K = 100 and K = 400.
As previously mentioned, the decoupled system can be considered as a SISO

system in terms of identification.
Consider the (3x3) SISO system as

¢ 0 0 "
X (k1) =10 4y 0} X.(K) + |y, W, (k)
0 0 ¢, 3

2(k) = (1,1,1)X,(K) + n,(K)

where
¢] = ,927372
0o = .88191
by = .177768
vy = 1.11439
i -1.40932
I L3031

and o, = .499801

The true Kalman filter is calculated as

gy = 1.27345
g, = -1.22638
g5 = 147568
NSPB = 10

T8 = 1 E-04
BW = 2745
ENOPB = 10 DB
SFRDB = 0 DB

(160)
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Its signal-to-noise ratio is 2.0016. Initial vaiues are given by

¢? = .94
5 = .9
¢§ = .75
g‘]‘ = 1.15
95 = -1.3
93 = .05

The following tables are the convergence rates for this case.
TABLE 2

CONVERGENCE OF ¢ ~

l’}g’g?jgion ¢, = .927374 ¢, = 881911 ¢3 = 777768
K=100 K=400 [K=100 K=400|K=100 K =400
20 .931523  .935041 | .895041  .897619 | .760655 .767604
40 .924770  .926946 | .838993  .886991 | .763505  .768910
60 .924573  .927804 | .887979  .888393 | .764136  .769145
80 1922456 927717 | .885366  .887378 | .764860 .769262
100 921746  .928777 | .883289  .888936 | .765356  .769461

)
t

A Rea
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TABLE 3
CONVERGENCE OF G AND VW

Number - - . - -
Eteration 9 = 1.27345 9, 1.22638 93 .147569 v = .310170
K =100 K =400{K = 100 K =400 }K = 100 K = 400]K = 100 X = 400

20 1.24253 1.25424]-1.20901 -1.19561).120113 .132448(.350336 .298245
40 1.25845 1.25510}-1.19354 -1.19486}.132420 .131805(.320628 .315488
60 1.26415 1.25776|-1.18818 -1.19220(.136563 .134330{.339504 .309749
80 1.26660 1.25737}-1.18578 -1.19261|.138356 .133823|.264868 .352092

100 1.26826 1.25984]-1.18420 -1.19015].139419 .136201].342379 .299879

Again, is observed the sensitivity of the Kalman gain initial value.
Experimentally, for a good Kalman gain initial value, the transition ini-
tial value is not overly critical. When the Kalman gain is large, this
dominates the sample space in calculating 3J(g) and M. When the Kalman gain

38
is too small, it is difficult for the estimates to converge to the absolute
minimum value. Without good initial values, it is better to set a large
eigenvalue (103 " 104 in (3x3) case) for the threshold and use the rank
deficient method instead of the sweep rank deficient method.
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SECTION IV
RESULTS

1.  SIMULATION VERSUS CLOSED-FORM ERROR-RATE RESULTS FOR PSK AND FSK

The development of the Monte Carlo simulation for PSK and FSK in color-
ed multiplicative or colored additive noises was performed in Phase [ of
the present contract and was reported in [1]. However, minimal simulation
results were reported therein. Those six figures are repeated here for
completeness and because of their relation to the present work.

Figure 7 shows the comparison of Monte Carlo results with closed-formn
results for PSK in white noise only. This curve verified that the Monte
Carlo simulation routine was operating properly.

Figure 8 shows the variation of Monte Carlo error rate for PSK in
275 Hz. colored noise as a function of modulation index. This curve showed
that the transmitted signal must have a residual unmodulated carrier compo-
nent to enable the IDEI detector in colored multiplicative noise.

Figures 9 and 10 show Monte Carlo results for PSK and FSK, respectively,
in heavy multiplicative noise. The cases were set as though the diffuse
multipath reflection were equal in strength to the direct path {MPR = 0 dB).
For these cases any additive colored interference was essentially removed
(SJR = 53 dB). These results were analyzed in [1] and [12]. The expected
3-dB difference in white-noise only E/No performance [20] is due to the
different values of correlation coefficient, p, in (53).

Figures 11and 12 show a comparison of Monte Carlo and closed-form
results for PSK and FSK, respectively, in colored plus white additive inter-
ference. Here the Monte Carlo results are plotted against the closed-form
solid curves. In the FSK case the standard detector was noncoherent in the
simulation, while the solid curve is for a standard coherent detector.

These results were analyzed in [1] and [12].

Figure 13 is the first set of results not previously documented. Here,
PSK is subjected to strong narrow-band additive colored interference plus
white interference. The ratio of colored interference to desired signal is
23 dB (SJR = -23 dB). The error rate is plotted versus signal energy per
symbol to white noise spectral density (E/No). The ratio of interference
bandwidth to symbol rate is

BW _ 275 _
BR = 2500 - 011
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The simulated results are plotted next to the closed-form solid curve.

Note that the discrepancy between simulated and closed-form results here

amounts to 1-2 dB of signal to white noise ratio, or a factor of 5-6 in

error rate. The explanation is that when the ratio of colored interference

to desired signal becomes quite large (SJR = -23 dB), the detection errors

are no longer independent and isolated. Rather, detection errors occur

in "bursts" of 5 to 7. This is a consequence of improper decision-directed

re-initialization of the tracking filters after a single detection error.

In Figure 13, the standard detector error rate was 0.5 and was not plotted.
In Figure 14, the Monte Carlo and closed-form results are compared

for the IDEI detector for FSK in heavy additive colored plus white inter-

ference. Again, the agreement between closed-form and simulation is good.

© e aXy W5

3 However, the poor performance of FSK in Figure 14 relative to PSK in Figure
i 13 is surprising. This is the difference alluded to in Section II.2., on
4 page 18 . Figure 15 shows a similar FSK run for SJR = -20 dB with the

standard FSK detector closed-form and simulation results also plotted. It
is apparent that the FSK results are valid. However, the difference between
PSK and FSK results is not explainable on the basis of signal and noise
spectra, as noted in section II.2.

e

Figures 16, 17, and 18 show the qualitative relationships between the
PSK and FSK signal spectra and the colored noise spectra. In Figure 16 is
shown the PSK spectrum (low-pass) for a 2500 symbol per second signal.
Superimposed are narrow-band and full-band colored noise spectra for SJR =
-5 dB. The noise bandwidths are 275 Hz and 2744 Hz, respectively, which
yield bandwidth to symbol rate ratios of BW/BR = 0.109 and BW/BR = 1.09,
respectively. As detailed in [1], the colored noise is generated from a
filter having three real poles and one real zero (in the s-plane). Any
desired noise bandwidth is obtained by simply scaling the poles and zeros
by the same factor. The colored interferences used in Figures 9-15 had the
spectral shape of the narrow-band noise shown in Figures 16 and 17. It is
shown in Figure 16 that this type of colred interference decays in frequen-
cy as 1/f4, whereas the PSK spectrum decays as 1/f2.

In Figure 17 is shown the FSK signal spectrum corresponding to the
model of equation (33). This spectrum also decays as 1/f2.
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In Figure 18 is shown a second type of aéailable colored interference
spectrum. This spectrum is synthesized by using 3 real poles and 2 imag-
inary zeroes (in the s-plane). The resulting null in the interference g
spectrum was placed coincident with the first null in the PSK signal spec- '
trum. The interference spectrum decays at the same rate as the PSK spec-
trum, i.e., as l/fz. It was hypothesized that such an interference spec-
trum would be a "worst case" for a PSK signal.

Figure 19 shows IDEI results for PSK and FSK in fullband interference
of the first kind, which decays as 1/f4. Here the colored interference
was as in Figure 16 with a strength 20 dB greater than that of the desired
signal. Again the comparison of Monte Carlo and closed-form results is
good, under the observation that the IDEI errors are occurring in bursts.

2. IDE] CLOSED-FORM PERFORMANCE FOR PSK IN COLORED INTERFERENCE WITH
PERFECT IDENTIFICATION

At this point in the investigation, it was decided to devote the re-
maining time and resources to an in-depth examination for one signal type
and one interference type. The signal chosen was PSK. The concentration
on additive colored interference rather than multiplicative interference
was implied by two factors. First, behavior of the IDEI detector for multi-
plicative noise has been rather thoroughly investigated previously, as re-
ported in [3]. Also, the initial results presented in Figures 9 and 10
for PSK and FSK were not qualitatively different than those in [3] for a
hybrid PSK-FSK 4-ary modulation. Second, the results for additive colored
noise are of great interest in the context of radio jamming.

Figure 20 shows the first closed-form results for IDEI error-rate for
PSK in additive colored plus white noise. Here, error rate is plotted
versus a normalized colored interference bandwidth. The abscissa is the
ratio of colored interference (equivalent) noise bandwidth to symbol rate,
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in decibels (10 10910(-)). A family of IDEI curves is plotted with E/No

as parameter. The ratio of colored interference to desired signal power is
20 dB (SJR = -20 dB). The performance for the standard PSK detector is
also plotted for comparison.

Figure 20 shows three general results of considerable interest. First,
there is a worst case colored interference bandwidth which maximizes the
error rate for each value of E/No. Second, the worst case maximum error
rate decreases and the worst case bandwidth increases with increasing E/No.
Third, for a given value of E/No’ the IDEI detector error rate converges
to that of the standard detector as the colored interference bandwidth
increases.

An obvious inference to be drawn from Figure 20 is that the IDEI
detector provides the most "gain" over a standard detector when the colored
interference is narrow-band compared to the desired signal. A second
inference is that under mini-max, or worst case, conditions, the IDEI detec-
tor still provides some gain oVer a standard detector. Two subsidiary
figures, derived from Figure 20, illustrate these points.

In Figure 21 is plotted the IDEI error-rate performance versus E/No
for PSK subject to 20 dB colored interference having normalized bandwidth,
BW/BR = 1/5. For each IDEI error-rate boint plotted in 21 it may be deter-
mined from 20 what value 6f BW/BR is required for the standard detector to
yield an equal error rate. Thus, the required spectrum-spreading factor is
determined and plotted in Figure 21. For BW/BR = 1/5, it is seen that the
IDEI detector yields the same performance as would be obtained from a stan-
dard detector using spectfum-spreading by a factor of 103 - 104 for error
rates of 107} - 107,

In Figure 22, the worst-case IDEI error-rates are plotted versus E/No.
Each IDEI error-rate point corresponds to a unique value of BW/BR. The
corresponding standard detector error-rate points are also plotted. It is
seen that even under worst case conditions the IDEI detector has a 10 dB
advantage over the standard detector in terms of white noise E/N0 ratio.
For information purposes, the worst case bandwidth for the colored inter-
ference is plotted versus E/No. This plot shows that the worst case inter-
ference bandwidth for the IDEI detector is always considerably greater than
the desired signal bandwidth. The converse is true for the standard detec-
tor, for which the worst case interference is narrow-band. These
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observations are based on the assumption that the interference source does
not possess the sophistication to generate a spectrum which duplicates the
signal spectrum.

Figure 23 shows the results of the first attempt to evaluate the per-
formance for colored additive noise of the second kind, whose spectral shape
was shown in Figure 18. It is known that the observed saturation of the
error-rate versus E/N0 occurs when there is an unmodelled disturbance pre-
sent which has not been included in derivation of the detection algorithm.
It was hypothesized that the unmodelled disturbance was aliasing, due to
the considerable high frequency content of the colored interference. Thus,
the case for SJR = -5 dB was rerun with sampling rate increased by a factor
of 10. The results are shown in Figure 24, confirming aliasing as the un-
modelled disturbance.

In Figure 25, IDEI results are plotted for PSK subject to both types
of full-band colored interference with SJR = -20 dB. The better performance
resulted for the full band interference spectrum with BW/BR = 1.09 which
decayed as 1/f*. The worse performance resulted for the interference spec-
trum which decayed as 1/f2. It is not known whether or not the slight
indication of saturation for 45 dB < E/No is due to aliasing.

Figure 26 shows the results of the first attempt to evaluate the IDEI
error-rate as a function of the ratio of colored interference to desired
signal power (SJR). Families of curves were plotted with normalized inter-
ference bandwidth (BW/BR) as parameter. For each value of BW/BR a different
value of E/No was used. This was because certain combinations of BW/BR,
E/No, and SJR caused the solutions on the 16-bit minicomputer to become
numerically unstable.

It was found that when cases were run where the ratio of interference
power to white noise power (in the interference bandwidth), J/N, was greater
than 60 dB, the numerical computer solution became unstable on the 16-bit
PDP 11/40. This did not occur on the 60-bit CDC-6600. However, it was
decided to 1imit the runs to conditions for which J/N < 60 dB. The ratio,
J/N, is related to the other parameters as

(E/N,)
N = TBW/BR) - SR - L(d¢) (161)

(<"
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In (161), L{a¢) is the modulation loss defined in (56).

In Figure 26, the values of E/N0 used were those required to set J/N =
60 dB when SJR = -35 dB. Under these conditions, it appears that the error
rate performances of both the standard and optimum detectors increase as
the colored interference bandwidth becomes greater. However, this apparent
performance increase is illusory and does not occur if E/NO is held constant
as per Figure 20.

Figures 27 through 30, inclusive, show a series of four families of
error-rate curves for standard and IDE! detectors. Each figure contains
results for four values of normalized interference bandwidth, BW/BR = 0.109,
1.09, 10.9, and 109., respectively. From figure to figure, E/No is varied
in 10 dB steps, from 17 in Figure 27 to 47 in Figure 30.

Note that in Figures 27 through 30, the standard detector performance
is the same. This is because the standard detector error rate is dominated
by the colored interfering process, rather than the white noise. The IDEI
error-rate performance is seen to vary from figure to figure, depending on
E/No. The general trend displayed is that the high-frequency tracking
performance of the IDEI detector becomes better as E/No_increases. In all
cases the IDEI detector performs better than the standard. However, for
a particular value of colored interference bandwidth, the margin of perfor-
mance of the IDEI over the standard detector is a function of E/No.

Another method for comparing the performances of the IDEI and standard
detector is to hold constant the ratic of colored interference power to
white noise power in the bandwidth, 1/T = BR, of a filter matched to the
desired signal. The ratio, JT/NO, is related to the other parameters as

o (EN)
el (162)
5 L(86) - SIR

Figure 31 shows the results for four values of normalized bandwidth
for the quantity JT/No held constant at a value of 70 dB. This shows rather
clearly the SJR performance of the IDEI detector vis-a-vis the standard

detector as a function of colored interference bandwidth.
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Comparing (161) and (162) it is evident that

JT/N,
BW/BR (163)

J .
N

Now, it was conjectured that the error-rate performance of the IDE! detec-
tor is controlled by the ability of the filter to track the colored inter-
ference in white noise. Hence, the error-rate should be a function of J/N.

Since (163) shows that J/N is a ratio of JT/No and BW/BR, the same error-
rate should be obtained so long as the ratio is maintained constant. To
demonstrate this empirically, the cases shown in Table (4 ) were computed.

TABLE 4
P(e) INVARIANCE

SR dB | -16 -16 -16 -16
/N dB 42 37 32 27

T 1.27 x 10 | 4ax10® | 1.27x10% ] 4x10
BW/BR 3.46 1.09 0.346 0.109
JT/N, dB 55 50 45 40
P(e) 2.34 x 10 | 2.50 x 1077 | 2.60 x 1077 | 2.56 x 1077

It is seen from Table 4 that over a wide range of normalized bandwidth,
it is J/N which controls the error-rate, P(e).

Some computational advan-

tage may be gained from this result by realizing that results for greater
values of BW/BR, which normally require more samples per computation, may
be obtained by fixing BW/BR and reducing JT/NO.

Two final sets of error-rate results for perfect identification were
obtained for colored interference of the second kind which decays as 1/f2,
In Figures 32 and 33 are plotted the error-rate results versus SJR for the

IDEI and standard detectors. In Figure 32, E/No is held constant at 47 dB.

In Figure 33, JT/N0 is held constant at 70 dB. Both curves show that the
IDET detector has a 15-20 dB advantage over the standard detector, depend-

ing on the basis of comparison, for this "worst-case" colored interference.
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3. ERROR-RATE SENSITIVITY OF IDEI DETECTOR TO IDENTIFICATION ERROR

The next step in the evaluation of the IDEI detector was to determine
the loss in error-rate performance when identification of the required
colored interference statistics was less than perfect. It was desired to
perform some sort of controlled sensitivity study, varying only one statis-
tical parameter at a time, rather than immediately trying the ML identifi-
cation algorithms.

It was determined in Section III that the necessary statistical quan-
tities to be identified are the state transition matrix, ¢, and Kalman
(Wiener) gain matrix, G. Now, ¢ is the transition matrix of the interfer- ;
ence generating model. fiven the order of the interference model, ¢ deter-

mines the structure of the colored interference procesc and its equaivalent
noise bandwidth, BW. Thus, a controlled method for varying ¢*, the identi-
fied matrix, is to obtain it from a frequency-scaled version of the "true"

interference spectrum which produced $. In terms of the S-plane poles and
zerges of the continuous-time generator of the colored process, frequency-
scaling simply means multiplying all poles and zeroes by the same constant,
K, where

BW* = K BW (164)

and BW* is the bandwidth of the identified process. This is the method
used herein to set up ¢* for the Wiener filter.

Given that ¢* is related to the frequency-scaled interference spectrum,
as above, the only other unknown statistic for the colored interference is
its amplitude scale. Let J be defined as the mean-squared value {variance)
of the true colored interference process and J* as the identified value of
J. fGiven J*, 9*, and the true white noise level (E/No), the identified
Kalman gain, G*, may be easily calculated from the Kalman filter equations.
This is the method used herein to set up G* for the Wiener filter. Symbol-
ically, |

{BW*, BW} > o¢*
{J%, J, %, E/N} > G (165)

Note that this controlled method for calculating ¢* and G* is not equiva- i
lent to the M-L method of Section III. There, the computation algorithm %ﬂ

HE
have no knowledge of white-noise level (E/N). i
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The procedure for evaluating the sensitivity of the error-rate to
errors in ¢* and G* is as follows. In one case, BW* = BW and ¢* = ¢. The
closed-form error-rate is then computed for various specifications of J*/J,
using the resulting G*, derived as above. In the other case, J* = J. The
closed-form error-rate is computed for various specifications of BW*/BW,

using the resulting ¢* and G*, derived as above.

Figures 34 and 35 show the results for a case where the IDEI detector
is implemented with the true ¢* = ¢, but G* is in error according to a
scaling error in the strength (variance) of the colored noise process
specified by J*/J. The error rates are presented for SJR = -20 dB and
BW/BR = 0.109 which is the narrow-band interference of the first kind.

The results are plotted versus E/No. These two figures show that the first
5 dB of error in colored interference strength cost only about 1 dB in terms
of E/No performance. Beyond 5 dB, identification error is much more

costly if the colored interference strength is underestimated, rather than
over-estimated.

Figure 36 shows a detailed examination of the behavior of the various
elements which make up the arqument of the error rate, P(e). In terms of
the expression for P(e), given in (11), n is the mean, as calculated from
(7) and ¢ is the standard deviation, as calculated from (8). The quantity,
v, 1is the actual tracking error variance, which is VEE(O)‘ as calculated
from (9). It is seen that neither u nor o reach extreme values for perfect
identification, when J* = J. However, the ratio, u/c, does maximize for
J* = J. Also, the interference tracking error variance, v, does minimize
for J* = J.

It is possible to define a "Detection Loss" factor as the ratio of the
maximum value of u/c to its value as obtained for any particular value for
J*/J. This factor is plotted in Figure 37. Here the penalty for under- .
estimating the strength of the colored noise process is clearly shown.

Figures 38 and 39 show cases similar to those of 24 and 35 where now
the plot is versus SJR with JT/No held constant at 60 dB. The same conclu-
sions reached previously are also supported by these figures. Figure 40
gives the accompanying plot of detection loss.

Figure 41 and 42 are for the same case as 34 and 35 where now the
detector is implemented for J* = J but ¢* (and G*) are in error according
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to a scaling error in the bandwidth of the colored noise process, speci-
fied by BW*/BW. The error rates are again plotted versus E/N0 for SJR =
-20 dB anu BW/BR = 0.109. These two figures show that bandwidth identifi-
cation error is much more costly if the colored interference bandwidth

is underestimated, rather than overestimated. Figure 42 shows that when
overestimating the bandwidth the penalty becomes, asymptotically, just
that due to the extra white noise which is admitted to the detector.

Figure 43 shows the variation of the error rate argument components,
as was done in 36. The same behavior obtains for identifying bandwidth
as for strength.

Figure 44 shows a plot of detection loss versus error in bandwidth
identification. It is obvious that the margin for error in identifying
bandwidth is smaller than that for identifying strength.

' Figures 45 and 46 are for the same case as 40 and 41 where, now, the

: plot is versus SJR with JT/N0 held constant at 60 dB. The same conclusions
reached previously are also supported by these figures. Figure 47 gives
the accompanying plot of detection loss.

3 Figures 34 through 47, inclusive, have presented an evaluation of the

et e o

sensitivity of IDEI error rate to error in identifying the strength and
bandwidth of the colored interference process. An initial conclusion to
be drawn is that the IDEI detector algorithm is reasonably robust in terms
of identification error, so long as the filter functions, ¢* and G* are
synthesized in a deterministic manner, based on identification of strength
and bandwidth of the colored interfering process. Such an identification-
synthesis procedure is ad hoc and not based on a straight-forward applica-
tion of estimation theory. Before proceeding further with it, it was de-
cided to evaluate a more rigorous approach, that of Maximum-Likelihood
Identification.
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4. ERROR-RATE PERFORMANCE OF THE ML IDENTIFICATION ALGORITHMS

In Section I11.3., results were given for the performance of the ML
identification algorithms in terms of convergence of the estimates of the
parameters G and ¢ of the filter to be identified. However, in the present
probtem, the filter being identified is embedded in a signal detector.
Thus, a further measure of identification performance is the error rate of
the associated detector.

The 6x6 example of Section III.3. may be used here. The actual data
generator structure is

Yy < 1.11439

Yo = -1.40932 Ay T Ay T Ay E 1.0
i 0.303111

oy = 0.927374

¢, = 0.881911

5 = 0.777768

The above structure results for the following specification of the signal
communication problem:

Number of Samples per Symbol (NSPB) : 10
Number of Symbols per Second (BR) : 25 x 10
Signal to Colored Interference Ratio (SJRDB) : 0 dB

Colored Interference Bandwidth (BW) : 2743 Hz.

Energy per Symbol : Noise Spectral Density (E/No) : Variable

3

Table 5 shows error rate results obtained using identified filter
structures, for values of E/N0 between -15 dB and +25 dB in 5 dB steps.
For each value of E/No’ identification was performed using 100 data samples
and 400 data samples. For both sets of data samples the number of iterations

was 100. The filter gains, 9y 9o and 9, were initialized using proper
values. The transition parameters, 410 650 and 64, wWere initialized at
0.95, 0.9, and 0.75, respectively.

108




TABLE 5

ERROR RATE PERFORMANCE OF SJR = 0

True Data Estimates ¢* | Estimates G* Error Rate
E/N, = -15 dB K = 100 |
r = 8.88786 o) = .962275 | g, = -.188813 x 10"1
g, = 174635 x 107 | o, = .909611 | g, = .129918 x 107 i
g, = -.126974 x 107 o, = .749812 ! gy = .155987 x 107" | ple) = .406673
g, = 104189 x 1072 | K = 400 !
p(e) = .403394 6, = .922637 | g, = .525372 x 1072

6, = .905056 | g, = -.694674 x 107

6, = 749797 | g5 = 122717 x 107" | p(e) = .403501
E/N, = -10 dB K = 100
I = 4.99801 6, = .933537 | g, = .462744 x 107
g, = .501310 x 107 | 6, = .908293 | g, = -.404340 x 107"
bz = -.374055 x 107" | o, = .749640 | g5 = .306828 x 107 | p(e) = .339498
g, = 315661 x 1072 | K = 400
b(e) = .339301 0, = .915837 | g, = .407356 x 107"

¢, = .90779 | g, = -.298345 x 107

0, = .750128 | g, = .187085 x 107" | p(e) = .339731
£/ = -5 dB K = 100
= 2.81059 b, = .922487 | g, = 11913
g, = .130345 0, = .905116 | g, = -.962566 x 10"
g, = -.102093 0, = .799720 | g, = .876633 x 1072 | p(e) = .254793
g, = 911142 x 1072 | K = 400
pe) = .253087 6, = .928011 | g, = .120169

0, = .897036 | g, = -.942549 x 107"

0, = .800237 | g, = .133610 x 107 | p(e) = .253378




True Data Estimates ¢* | Estimates G* Error Rate
E/N, = 0 dB K = 100
r = 1.58051 6y = 931785 | g, = .324643
g, = .303158 4, = 909121 | g, = -.284925
g, = -.253838 0, = 752618 | g, = .448313 x 107" | p(e) = .161505
gy = 246645 x 107 |K = 400
ple) = .159826 6) = 928605 | g, = .317638

4, = .894738 | g, = .278292

6, = 754331 | g, = .414739 x 10! | p(e) = .160286
E/N, = 5 dB K = 100
r = .888785 ¢, = .932805 | g, = .664334
g, = 642817 6, = 911643 | g, = -.556296
g, = -.578550 6, = 749511 | g, = .558376 x 107" | p(e) = 820992
g5 = 623676 x 107" |K = 400 x 107
ple) = .800263 x 10™'|¢, = .924907 | g, = 650377

0, = .886843 | g, = -.569073

6, = 752203 |g, = .520069 x 107" | p(e) = 803929

x 10°

E/N =10 d8 K = 100
r = .499801 6, = 921746 | g, = 1.26826
g, = 1.27345 0, = .883289 |g, = -1.18420
g, = -1.22638 6, = .765356 |g, = .139419 ple) - 263344
g, = 147568 K = 400 x 10
ple) = .255149 x 107 6, = 928777 |g, = 1.25737

6, = .888936 |g, = -1.19015

65 = 769261 |g, = .136201 ple) = 257505

x 10

= e 4 G e - O N - v ew e P )

Table 5. (Continued)
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True Data Estimates ¢* | Estimates G* Error Rate
E/N_ = 15 dB K = 100
r = .281059 o, = .886738 | g, = 2.27338
9, = 2.39697 0, = 831381 | g, = -2.42825
g, = -2.448 03 = 778201 | g, = 259117 ple) = 346750
g, = .3276 K = 400 x 10
pe) = .248033 x 10779, = .938559 | g, = 2.3178
6, = -893108 | g, = -2.37971
65 = 751622 | g, = .342483 ple) = 261718
x 10
: E/N, = 20 dB K = 100
1 r = .158051 oy = 94344 | g, = 4.1031
% g, = 4.3257] 6, = 894073 | g, = -4.79684
% g, = -4.63936 65 = 752790 | g, = .50257 p(e) = .468965
' g, = 683923 K = 400
; pe) = .116825 x 10™"|s, = .942188 | g, = 4.17752
; 6, = .892235 | g, = -4.79354
64 = 747709 | g, = .500835 ple) = .221338
E/N, = 25 dB K = 100
r=.888785 x 107 |g, = .923291 |g, = 7.36274
g, = 7.51162 0, = 875451 | g, = -8.43728
g, = -8.38364 65 = 771556 | g, = 1.21118 pe) = 0
9y = 1.34467 K = 400
p(e) = 0. 6y = .918802 |g, = 7.36437
6, = -870304 |g, = -8.43565
63 = TTMAT7 | g, = 1.21267 p(e) = 0

Table 5. (Continued)
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When the filter gains are large, they dominate the Information Matrix.
In such cases, the tran:zition matrix values, ¢], ¢2, ¢3 have lesser effect.
The filter gains increase as the ratio of colored noise to white noise
increases. Thus for a fixed ratio of signal to colored interference
(SJRDB = 0 dB), the filter gains increase with E/No. Since the error rate
decreases with E/No, it is for low error rates that good initialization of
the filter gain identification is needed.

When E/N0 = 20 dB, estimates of ¢ and G closely approximate the true
values, and yet the error rate performance is poor. This is because the
error rate is determined by ¢* and G* according to the function é*{I - G*p),
as in equations (8) and (9). Thus, when |G*| is very large, the error rate
is very sensitive to identification error. Conversely, when |G*| is quite
small, even quite approximate estimates give good error rate performance.

Another example case was examined where the generator structure was

L 11.1439

Yy = -14.0932

Y3 = 3.031M1 A] = A2 = A3 =1.0
¢1 = 0.927374

¢2 = 0.831911

¢3 = 0.777768

This structure resulted from the following specification of the signal
communication problem:

Number of Samples per Symbol (NSPB) : 10
Number of Symbols per Second (BR) i 25 x 10
Signal to Colored Interference Ratio (SJRDB) : -20 dB
Colored Interference Bandwidth (BW) : 2743 Hz.

Energy per symbol : Noise Spectral Density (E/No) : Variable

3

Table 6 shows the results for two values of E/No, 5 dB and 30 dB.
Again, very accurate initialization of the filter gain identification




ERROR-RATE PERFORMANCE FOR SJR = -20 dB

algorithms is required for convergence.

TABLE 6

In this case, the ratio of colored

interference to white noise is 20 dB greater than in the previous example.
Thus, the filter gains are greater by roughly a factor of ten.

True Data Estimate ¢* Estimate G* Error Rate
E/N, = 5 dB K = 200
r = .888785 6, = 923614 | g, = 7.41383
g, = 7.51253 |6, = .875887 | g, = -8.43760 p(e) = .286132
g, = -8.38495 |0 = 770917 | g, = 1.16079
g, = 1.30489 |k = 400 |
ple) = .257187 |0, = .920892 | g, = 7.41404
4, = .B71545 | g, = -8.43599| p(e) = .282038
6, = 772184 | g, = 1.16233
E/N, = 30 dB K = 200 g, = 60.8014
r = 499801 x 107'| ¢, = .944248 | g, = -74.9986
g, = 60.4589 4, = .894856 | g, = 15.0013 | p(e) = .393391 X 1075
g, = -74.7359 | ¢, = .759842
gy = 15.1978 K = 400
p(e) = 0.0 0, = 946587 | g = 60.8012
4, = .895022 | g, = ~74.9988
6, = .757249 | g, = 15.0012 | p(e) = .953674 x 107°

The previous two examples

noise becomes greater.

show that the identification algorithms be-
come more difficult to initialize as the ratio of colored noise to white
However, these are precisely the conditions under

which accurate identification becomes Tess critical. It has been shown

‘ above that so long as all elements in G* are increased by the same factor
; the only effect on the error rate is that of letting additional white noise

into the system.

manner.
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SECTION V
RECEIVER DESIGN AND PRACTICALITY EVALUATION

1. BASIC RECEIVER SYSTEM DESIGN

Figure 48 shows the basic receiver block diagram. It includes the
two decision-directed (D.D.) filters for tracking both additive and multi-
plicative colored interference. These two filters provide inputs (the
tracking error waveforms) to the bit decision circuitry. Also included is
the identification circuitry which processes the received signal to provide
the constants (perhaps slowly time-varying) for implementing the filters.
The identification circuitry is also decision-directed. For this design,
it is assumed that timing and bit synchronization references are provided
externally. In the final design, bit synchronization will necessarily
also be derived directly from the received signal. The method for obtain-
ing bit synchronization was not considered in the present investigation.

The question of feasibility of the present design breaks down into
more or less separate questions about the theoretical feasibility and the
hardware feasibility. A critical part of the theoretical feasibility ques-
tion concerns the exact implementation of the identification circuitry.
This is dealt with, separately, below. The hardware feasibility question
concerns the implementation of both the identification circuitry and the
tracking filters. In particular, the hardware question is that of how
to implement sampled-data hardware at high sampling rates. This latter
question was originally posed in [1].

Another part of the theoretical feasibility question is that of deriv-
ing a carrier phase reference for the tracking filters. This question is
not critical in the context of multiplicative noise (multipath). In [3]
it was shown that a multiplicative noise tracking receiver also tracks out
the phase error of a carrier ptiase-locked loop subjected to the multiplica-
tive noise environment. It is therefore conjectured that a receiver with
tracking capability for both multiplicative and additive colored noise will
track out the phase error of a carrier phase-locked loop subjected to the
additive noise environment. However, the question may be critical for an
interfering c.w. carrier which is close enough in frequency to the trans-
mitted carrier to capture the phase-locked loop. The question of the effects
of additive interference, c.w. or noise-like, on the carrier tracking loop
should be investigated for the IDEI detector.
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2. IMPLEMENTATION OF IDENTIFICATION

From [1], the optimum set of required identifying algorithms are those
which yield minimum mean-squared-error between the true and identified
structure of the colored interference generator. Also, because the IDEI
tracking algorithms are sampled-data recursive, memory requirements can be
minimized if the identification algorithms are also sampled-data recursive.

The algorithms actually developed during the present investigation
were based on the Maximum Likelihood estimation criterion, rather than the
Conditional-Mean criterion, called for in [1]. These M.L. algorithms do
not necessarily yield minimum-mean-squared-error for estimation of the
structure parameters. Neither are they completely recursive, since they
operate on batches of received data vector measurements. The reason that
batch-M.L. identification was used is that there existed previous well
documented theoretical work in the general area. The previous work was
extended to the specific case of a coupled I-Q data vector, using the
Minimum Canonical Form for the interference generator which was originally
derived under this investigation.

The results of Sections III.3 and IV.4 showed several interesting
facts. First, when the colored interference vector, y(k), was modeled as
Markov-1 (the ¢- matrix is 2x2) the M-L identification algorithm converged
nicely to ¢* and G* with reasonable initialization of the estimates. How-
ever, when y(k) was modeled as Markov-3 (the ¢-matrix is 6x6) extremely
accurate initialization was required for convergence. Secondly, it is
possible, even with good convergence, for the resulting error rate tao be
poor, as for E/No = 20 dB in Table 5 on page 106. Thus it appears that
the IDEI tracking detection performance can have great sensitivity to the
structure of the filter as identified by the M.L. algorithms, even when the
convergence is quite good.

The possible poor error rate under ML identification should be con- .o
trasted with the good error rate sensitivity demonstrated in Section IV.3
where the identified filter structure was far removed from the optimum
structure. In terms of identification error the filter structure was poor
and yet the error rate remained good. What these results imply is that
there probably exists an ad hoc identification scheme which will perform
much better that the "optimum" M-L identification algorithm, so far as
minimizing probability of error is concerned.
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One such ad hoc scheme would be to model the possibly Markov-N dis-
turbance, y(k), as Markov-1 and use the simple 2x2 identification algorithm
to identify a "dominant pole" in the ¢-matrix and a dominant gain term in
the G-matrix. The actual Nth-order ¢* and G* could then be synthesized
using a deterministic filter model such as Butterworth or Chebyshev.
Another ad hoc scheme would be to estimate directly the amplitude and
bandwidth of the disturbance, y(k), and deterministically synthesize a
filter for the identified amplitude and bandwidth process using a "“design-
point" value for E/No.

It is clear that further refinement of the method of implementing
identification is required before the IDE] detector can be stated to be
theoretically feasible for non-band-limited signals such as PSK and FSK.
Such further work should concentrate on a combination of sub-optimal iden-
tification of fewer parameters, coupled with deterministic filter synthesis.

3. HARDWARE PRACTICALITY

The key question about hardware remains that of fast sampled-data
processing. The tracking filters need not be overly complex, having, per-
haps, from one to three states per In-phase and per Quadrature vector ele-
ment per multiplicative noise tracker and per additive noise tracker.
However, the tracking filters must process samples at a much higher rate
than the Nyquist rate, at least for non-band-l1imited PSK and FSK signals.
Also, the identification processor must accept samples at the same rate
during the interval of time over which it is collecting data. It does not,
necessarily, need to process the data at the same rate as the recursive
tracking filters. Thus, the practicality of hardware is mainly to be det-
ermined by the implementation of the fast tracking filters. The required
processing speed is proportional to the bandwidth of the disturbance being
tracked. For narrow-band disturbances and symbol rates less than, say,
2400 BPS, the processing speed may be achieved using standard digital hard-
ware. For wide-band disturbances and high data rates, CCD filters may be
applicable. A practical hardware design will be completely dependent on
the signalling environment and interference scenario.
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SECTION VI
CONCLUSION

This report has documented the results of a fourteen month effort to
determine performance boundaries for Integrated Detection, Estimation,
and Identification. The best performance of the IDEI detector for perfect
identification has been determined using PSK and FSK signal modulation and
the probability of error performance criterion.

It was shown that the IDEI algorithms with perfect identification rro-
vide performance which is orders of magnitude better than that of standard
detectors optimized for white noise only, when the additive and/or multi-
plicative interference is colored., Furthermore, it was shown that the
optimum performance degrades smoothly with increasing error in identifi-
cation of the strength and/or bandwidth of the additive colored process.

A most interesting result was that the error-rate performance of the
IDEI detector depends not only on the accuracy of identification but also
on the exact mechanism of the identification error. This result was dwelt
upon in Section V. This result implies that rigorously derived stochastic
identification algorithm may not be the best solution for the IDEI detector.

Another interesting result is the apparent better performance of PSK
over FSK in heavy additive colored interference. This was shown in Figure
13, 14, 15, and 19. Since both closed form and Monte Carlo results agreed,
the result is presumed to be valid. The physical explanation for this re-
sult has not been found during the present work.

Based on the results obtained in this investigation, the next steps
required for reducing the detector to practice become clear. First, a
better method for identifying the structure of the tracking filter is need-
ed. It is recommended that a procedure be used which is partly stochastic
and partly deterministic. The stochastic identification would be confined
to just the strangth and bandwidth of the interfering colored process. The
tracking filter would then be deterministically synthesized to match the
identified process.

Second, the IDEI detector must be augmented with a carrier phase esti-
mator for obtaining the required carrier phase references. The effacts of
the multiplicative and/or additive colored processes upon the carrier phase
estimate and also upon the detector error rate must be determined
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quantitatively. Alternately, it should be determined whether or not the
IDEI technique can be applied to incoherent detection wherein the carrier
phase dependency is deliberately averaged out of the detection algorithm.
An intermediate step between the coherent and incoherent IDEI approaches
would be to determine if the coherent IDEI detector can be augmented to
obtain carrier phase from symbol to symbol, as in DPSK.

Finally, the method for maintaining bit synchronization and system
timing must be determined, implemented, and evaluated. It is felt that
this scheme will probably be an "early-late" implementation which is more
or less standard.

To summarize, it is felt that the IDEI detector has been shown to
possess sufficient performance properties to warrent further analysis,
design, and ultimate development. It is hoped that the effort to develop
the IDEI detector will be continued to fruition.
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APPENDIX A
DERIVATION OF THE PSEUDO-INNOVATIONS

_ AUTOCOVARIANCE FUNCTION
In Section II, the autocovariance function, VEE(j) for § =0, 1, 2,
.., wWas required to numerically evaluate the closed form expression for

error rate of the IDEI detector under mis-identification. The autocovari-
ance function Vgg(j) is the covariance, E{gjk)gT(k-j)}, where £(k) is the
pseado-~Innovations process of a Kalman filter whose structure is not opti-
mum for the signal being filtered. Figure 1, below, shows the structure
of the actual generating model for the signal process, y(k), and the Kalman
filter using identified structure.

The equations governing the actual data generator are

A(k#1) = ox(k) + w(K)s Vo (k) = 1

¥(K) = ax();s vk =V

z(k) = y(k) + n(k) = ax(k) + n(k) A-1
The Kalman filter equations are

x(k|k) = x(k|k=1) + G*£(k)

x(k|k-1) = o* x(k-1]k-1)

£(k) = 2(k) - ax(k|k-1) A2

In the data generator, the input driving process may be assumed to be
white, Gaussian; zero-mean, with unit variance. Also, the output matrix,
A, may be assumed known and fixed. Any particular autocovariance for y(k)
may be realized through manipulation of only I, ¢, and N, the order of the
filter-generator. The additive white (receiver-generated) noise, n(k), is

modeled as having a variance, vnn’ which is not known, a Priori.

Since A is known, the only elements of the Kalman filter which need
be jdentified are the gain, G*, and transition matrix, ¢*, which, latter,
is the counterpart of the ¢-matrix in the generator. If G* is identified
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directly from the data, £(k), then the white noise variance, V,p» Need not

be identified separately.
The state-prediction error is defined as

X(klk-1) & x(k) - x(k|k-1) A-3

The pseudo-innovations may be written in terms of the prediction error,
X(k|k-1) as

£(k) = AX(k[k-1) + n(k) A-4

In the steady-state, y(k) and n(k) are zero-mean and so is &(k).
Thus, the steady-state auto-covariance function for g(k) is given as

v, (i)

T,, .
e E{g(k)e (k-3)}

AELX (K] k=1)XT (k-3 ] k-3-1)AT

+

AECX(Kk|k-1)n" (k-3)}s 0<j A-5

where use has been made of the facts that since n(k) is white and indepen-
dent of w(k), then

n(k) | X(k-j|k=3-1) 3 0<j
n(k) | n(k-j) s 0<j A-6

To evaluate the expectations in A-5 requires, first, the one-stage
evolution equation for x(k|k-1), which is obtained as follows.

o*x(k-1]k-1)
o*[x(k-1]k-2) + G*g(k-1)]
o*x(k-1]k-2) + 6*6*[z(k-1) - Ax(k-1]k-2)] !
o*[1 - G*AJx(k-1]k-2) + o*G*[Ax(k-1) + n(k-1)]

o*[1 - G*Adx(k-1|k-2) + o*G* x(k-1)
+ ¢*G*n(k-1) A-7

x(k|k-1)

1]

121

B i R o PP VR




P

Next, the one-stage evolution equation for 5(k|k-1) is obtained as

it

x(k) - x(k|k-1)
ox(k-1) + rw(k-1) - o*[1 - G*nIx(k-1[k-2)
- o*G*Ax(k-1) - ¢*G*n(k-1)
o*[1 - G*A1[x(k-1) - x(k-1]k-2)]
- o*[1 - G*AJx(k-1) + [o* + ad]x(k-1)

X(k|k-1)

(]

+ Tw(k-1) - o*G*Ax(k-1) - ¢*G*n(k-1)
= o*[1 - G*AJX(k-1|k-2) + aox(k-1) - &*G*n(k-1)
+ rw(k-1) A-8

where o* & $ - AD

The j-stage evolution equation follows as

X(k|k-1) = [o%(1 - @*adY X(k-3lk-g-1) + E [ox(1 +
i=k-j

- 6*n) 1% 1T aex() - e*G*n(i) + Tw(i)]  A-g
It follows that
ECX(K[k-T)XT (k-3 [k-§-1)1 = [o*(I - 6*a]) E{X(k-j|k-j-1) -

k-1 ,
:)\(:_T(k-JIk-J-])} + Z ] [‘»*(I _ G*A)]k-]-‘l .

i=k-j
ECLagx(i) - o*6*n(i) + rw(1) X' (k-3k-3-1))
= [o*(I - 6*A) ] E(X(k-3{k=3-1)X" (k-3 [k=-1)3

k21 ey 7k-1-1 VY PR
+ ) [e*(I - 6*A)] ASE{x(1)X (k-jlk-3-1)}
=k_j

i A-10
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wherein use has been made of the fact that

X(k-jlk-3-1) [ wli) = kej, kej-T,...,
X(k-jlk-3-1) | n(i)
Now, o i-1 .
x(i) = oI gy vy W e
£=k-j
and thus
ELx ()X (k=3]k-j=1)}
. . i-1 .
- o D (ke )R (kg k-3-1r ¢ ) @i
£=k-j
rELw()X (k-3 1k=3-1))
= o (kI g (k)X (k-3 k-3-1)1

X(k-jlk-3-1) | w(e) : k-j < &

Substituting A-13 into A-10 gives

k-1

A-1]

A-12

A-13

ECX (K] k-1)XT (k=3 k=3-1)} = [ox(1 - 6*0) ] E(X(k-lk-j-1) -

k-1 _
iT(k'Jlk'J-])} + E [@*(I _ G*l\)]k-]-l .
i=k-j

o 3 Bk )X (k-d | k-3-1))

A-14

Now, the cross-variance term between x(k-j) and z(k-jlk-j-l) must be

computed.
ECx (k)X (k|k-1)}

= E(x(K)[o*(I - G*A)X(k-1]k-2) + aex(k-1) - ¢*G*n(k-1)

+ ru(k-1)1")
= E{[ox(k-1) + rw(k-1)][o*(I - G*A)X(k-1|k-2) *

+ aox(k-1) + Fﬂ(k-])]T}
(continued)
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= SE{x(k-1)XT(k-1]k-2)}(1 - 6*A)To*T + oE{x(K-1) -

5T(k-1)}A¢T £ 10t A-15
where use has been made of the facts that

x(k) | n(k-1)
x(k=1) | w(k-1)

X(k-1]k-2) | w(k-1) A-16
! Similarly,
, i .
| E{X(k|k-1)x" (k)
i = o*(I - G*A) E{X(k-1]k-2)x (k-1)}o"
; + A¢E{L(k-1)§T(k-])}¢T + 10t A-17

[ Equations A-15 and A-17 are recursive. Now define

E{gﬁk)gﬁ(klk-l)} 4 ng(k) 3 with steady-state solution, V
E{X(klk-l)5T(k)} & V%x(k) ; with steady-state solution, V;x

E{gfk)ﬁT(k)} 4 Vxx(k) ; with steady-state solution, Vxx

A-18
Then, it follows that

T

T
vxx(k) ¢vxx(k-1)¢ +IT

T

T..,T T
vx;(k) ¢VxY(k']) o (I ~ G*A) o> + onx(k-l)A@ +TT

T

T T
v;x(k) o*(I - G*A)V%x(k-l)0 + onxx(k-l)o 4+ T

A-19
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Next, define :

EK(kIk-1)XT (K k-1)) & V(K [k-1)

ECR(K [ K-1)RT (k=3 1k=3-1)1 = Vanlky k=3[k-1, k=j-1)  A-20
Then becomes
el ety o i j Citelis
Var(k, k=jlk=1, k-3-1) = [*(I - G*A) ] Var(k-j[k-3-1) +

k-1-i

k-1
+ o

Y Ler(n - eI oty i)
1=k=J A-21

where Vx;(k-j) is the steady-state value defined by the recursion of A-19
and V;;(k-jlk-j-]) is the steady-state defined by the follcwing recursion

Vo [k=1) = EC¥(k[k=-1)X" (k| k-1)}

EC[o*(1 - G*A)X(k-1|k-2) + aox(k-1) - o*G*n{k-1)

T

+ rw(k-1)] « [-1"}

o*(i - G*A)E(X(k-1[k=-2)X" (k-1]k=2)} + (I - G*n)Tox!

£ o%(1 - G*A)E(R(k-1[k-2)x (k=1)a0"
AT T,T
+ a0Ex(k-1)XT(k-1[k-2)} - (I - G*n)To*T + aoE{x(k-1) -
x(k-1)1a07 + orgry_G*ToxT + 11T A-22
which reduces to

_ - T.,T
v;;(klk-1) o* (1 - G*A)v;;(k-llk-z)(l G*A) o*

+ onxx(k—])A¢T + o*(I - G*A)v;x(k-1)A¢T

+ AoV _y(k=1)(I - G*A)T¢*T + O*GRY G*T¢*T + rrT
XX nn A-23
There remains to be evaluated the term
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ECX(k|k-1)n" (k-3)} = [o*(1 - G*A) T3 E{X(k-j|k-3-1)n (k=3)}

k-1 k-1-i

+ ) Lo*(1 - 6*A)] E {[aex(i) - o*G*n (i)

i=k-j

+ rw(i)In" (k-3))

j-1

- [o*(1 - G*A)] ORGHV 0<j A-24

The computational steps are now enumerated as

i)

i)

iii)

iv)
v)
vi)
vii)

Now, let Vx

X

o i R |
VEE(J) = AWp(k, k-jlk-1, k-j-1)A

j-1
- Ale*(I - G*A)] o*G*V

Vo, k=3lk=T, k-j-1) = [o*(I - 6*1) Pvys (k-3 [k-j-1)
k
i=k-j

Vanlk[k-1) = o%(1 - G*)Vaalk-1[k-2)(T - G*a)To*! +

+ A¢vxx(k-1)A¢T + o*(I - G*A)ng(k-])AOT +

T°*T T

+ A¢VXQ(k'])(I - G*A)T¢*T + gRGHY G +rr

T T
ny(k) = ¢ny(k-1) < (1 - G*A)T¢*T + ¢Vxx(k-1)Ao +rr
Vo (K) = o*(1 = G*A)Va (k=1)e' + aoV_ (k-1)o¥ + pp

¥ ¢ MV, o eV o *+Tr
- T T ) R
Vxx(k) = ¢Vxx(k-1)¢ +IT H 0<j
oy L T } .
VEE(J) = Avy%(klk‘])l\ + vnn ) J 0 A-25

s V;X, Vx%’ and V%y be the steady-state solutions of A-25.

Then the auto-covariance function of the pseudo-Innovations is
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V. () = M[o*(1 - G*A)TIvan + % [o%(1 - g*)1 "7
gg' XXk

s T . .
I VXQ}A - Afo*(I - G*A)]J L ¢*G*vnn H 0<ij
AT vV 3 §=0 A-26
XX nn

Equation A-26may be put in a more informative form as

o j-1 T T
V, () = A[e*(I - G*A)] o*[Vanh’ - G*(AVAA' + vnn)]

&g

+ A % [o*(I - 7Y Sl PSS L vx;AT : 0<j
i=1

= W 4V j=0 A-27
XX nn °

Note that from A-27, the conditions for £(k) to be white (or for the pseude-
innovations to be the Innovations) is for

G*

T T -1 _
Vil (AVQQA + Vnn) = Gopt

A2 = 0 A-28

G* in A-28is the value for the Kalman (optimum) gain, Gopt'
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APPENDIX B
STRUCTURE OF THE PSEUDO-INNOVATIONS AUTOCOVARIANCE
FUNCTION FOR A GENERAL IN-PHASE/QUADRATURE PROCESS

Statement of the Results
The covariance of the 2-vector stationary Pseudo-Innovations Process,
g(k), is

T

i) = * - G* j‘] T - %
VaE(J) ALe*(I - G*A)] ¢*[v;;A G (AV};A + Vnn)]
j . )
+ AL T Le*(1 - 6%1)1 Tae o3 v aaT ...
i=1 XX
for 0 < j
where
Vi = 0%(1 - GV (T - G¥a) !
+ A¢ny(l - G*A)T¢*T + o*(] - G*A)V;X/mT
T T T.,T
+ A¢VXXA¢ +TT1 + ¢*G*VnnG* o*
- _ T T T
Vo @Vx%(l G*p)o*' + ovxxA¢ +TT
T
Vix = vx%
_ T T
vxx = ¢Vxxo +rr

It will be shown that

. —

fs.. S
(1-gx) = | 1T 7100 o
St S| [

o o'l s s [05-0'S' , 0S'+0'S
¢*(I_G*A)= | =
o' o L-S' S_] (-0'S-0S' , -0'S'+eS
T g
é. ' - (a)
-ff ]
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From (a) and Lemma 1, it will be shown by induction that

r - - A -
Vo = | V%% V&% i Vo = I VYX v&xl VXx
X% ' XX v =
tvky V%&J l:vix VYKJ XX Vo

It will finally be shown that

Ty v,
meAT A | =h —57
XX by
2h
{ g' ]
G*(AVanA' + V) 2 e 3
XX nn _a'
% 9]
whence e gl
T T = 2
Varh' - 6 (AVaen” + vnn) * e}
2 2

VXX

VXX

It is also easily seen that if the In-phase and Quadrature processes are
independent (uncorrelated), then the off diagonal terms are null for

o* (I -~ G*A), o*, V;}, vx%’ G*, A%, and [V%}AT - G*(AV%%AT

for the uncorrelated case
1 0
Vga(o) = ugg(o) o 1 : ugg(o)scalar

For the correlated I-Q case, in general,

(3) ' (3)
gt = [
-UEE(J) UEE(J)

Supporting Lemmas and Theorems

Lemma 1
A and B are (nxm), (mx£) partitioned matrix respectively.

+ Vnn)' Thus,




I ——

¢ D

i

! A e . U P LRSS LGNS SR el D A e e

a2 18y By

|22 A]J o i‘_“z BL‘

Then the resultant matrix C = AB is also

'C ‘
c={ ! cz_]
i-C
L2 7

proof - -
o Ay A, l’B 32, C[ABAB,.  ABAR ];
Ay A ! LA B-A;B,» -A282+A]B]J
14 G
-2 CIJ
Lemma 2
Ij - ] ] =
ey e,] l’b bJ e;] = [ejb-e,b’, e b'+e,b] 2
Lb b 2-J eZJ
= - ' ' = 2 2
e,be, - e,b'e, + eble, + ejbe, = (e] + ef)b
= r, =
= b[e1, ez] iel;
L%2]
Lemma 3 '
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CH e2]’b -b" ruF ‘-‘ b b—} j

b by v ' |-b* b lLe

[y &1 [bu+b'ur , bul-b'v]7b b {e]‘l
Lb'ug-bug, b u{)‘*’bvg L:b b_j ~

- ' Vhi'4h! 1 "th'.."h'+h. 'heh! r
= [e], e2] bu€b+b ugb-bugb +b Uib s bUEb + UEb +bJ£b b UEb e

1

b'v_b-bu'b-b'y _b'-bu_b', b'u_b'-bu'b'+b'v!btby b
L vgb-bu, o Ve Ve Ug v btbu, I.-eg

= [e]s ez] (b2+b'2)ug (b2+b'2)U re—]
-(b2+b'2)y; (b2+b'2)uE e

(b2 + b'2)u£[e], e2] [%{}

|

Behavior of Kalman filter

- ] b
) . $q )
1 o' *1 0 ['y] Y]
- by by - Y - -
[, (k) 0 o0 N ke N NS
I e et I e P Y I
-¢ 0 ¢ k- ; 1)
| Xt 1 SRS B AC B - [wy(k-1)
NI R
NN
L. -
B-1

!'zi(k)"!; I A R R MO R (k)] | .
i B-2 ;
'.ZQ(k)h‘ ’0~ 0 A Ay qu(k)J | n,(K) 3

—

Kpp(K) = 05K (k1) + 000 k1) + v kel) # viwy(ke1) B-3

13
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ij(k) = ‘¢3’ ij(k‘]) + ¢ijj(k']) - Y5 W](k']) + Yjwz(k‘])

B-4
=1, 2, N
! where 2 x N is the order of the system
| R N
1. X(k|k-1) = #X(k-1]k-1) B-5
: Xp;(k]k-1) = b IJ(k 1]k=1) + ¢! xQ (k-11]k-1) B-6.
v =1) = - 4 (k- - k- - B-7
XQJ.(k]k 1) ¢J.X13(k 1]k-1) + ¢ijJ(k 1]k-1)
2. Voplk|k-1) = oVaolk=1]k-1)e" + rr' B-8
Define N -
VII(‘) = E{XI(') XI(')}
TR
VQQ(') - E{XQ(’) XQ(')}
\ ’\:T
Vigl+) = Exp(e) Xg(-)3
n, '\aT
VQI(’) = E{XQ(') XI(’)}
f\., -~
xl(klk-l) = XI(k) - xI(klk-l) 8-9
N
- = - X - B-1
XQ(k|k 1) XQ(k) XQ(klk 1) 0
More detailed expression is given
v N
Xpg(klk-1) = 05X (k-1]k=1) + o xQ UTI1) + vgwy (K=1) + yfwy (k-1)

| B-1 i
‘ ' n
l ij(k|k-1) = -¢! XIJ(k -1|k-1) + ¥ x jk=T1k=1) = v w1(k -1) + ijz(k -1) ‘
B-12
Vo (kIk=1) " Voo (k[k-1)
IS § IQ

Vor(klk-1) vQQ(k|k-1)[
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EMT

[V1’J(~)] denotes the ith row jth column of V(.) matrix

L X (klk-1) b
Vig(klk-1) = £ : X[ (klk-1)5 .. (klk -1, ... i

oty (K k=) 3

R Xpp(kik- 1)]

¥ XIN(klk-l{J @
B-14

o

therefore

[v;ii(k|k-1)] = E{[p X ;(k-1]k-1) + ¢%in(k_1|k_1) + g (k1) +

+

Y;wz(k-1)][¢.§ (k-T[k=1) + ¢:§Qj(k-1lk-1) gy (k1) + ko))

= 035 E{X i (k=11k-1) XIJ(k -1k-1)) + ¢,0; E{XI](k -1]k- ])X (k-11k-1)}

-+

419, E{xQ (k=11k- 1)x (k 1k-1)} + o} ¢ E{X 5 (k- 11k- 1)x (k 1k-1)}

+ v,Y, + Y!Yt
13 1]

b0 [v Jk-11k-1)7 + X [v J(k-11k-1)1

+

416, [v Jk-1lk-1)7 + ¥ [v J(k-11k-1)] + v, st YiY 0y

Similarly

N N v
[Vig  (k[k-1)1 = ECQoXp;(k-T]k-1) + o¥g;(k-T1k-1) + viMq (k1) +

+

ylwz(k-1)][-¢i; Ak-1{k-1) + ¢j;Q.(k-1{k-1) - Yiw (k-1) + y.wz(k-l)]

-69; [V J(k-1{k-1)7 + 86 [V I k-1{k-1)1 -6 [V I (k- 11k-1)] +

+

¢ ¢ [V (k ]lk ] .l'Yj + Y.in B-16

[Vaij(k(k-l)] = E{[-¢;xli(k-1|k-1) + ¢ixqi(k-1|k-1) - yjwy (k1) +

+

i (k-])][¢.;l.(k-1|k-1) + ¢!; j(k-‘l_@k-]) + y.w (k-1) + y!wz(k-l)]

-639; [VI Hk11k-17 - ¢'¢'[V J-11k-107 + o4 b5 [V Ik {k-1)1 +

+

1¢j(VQQ (k‘”k")] - 'Yin YiY J B-17




[vge) (kIk-D = E(T-okp;(k-T1k-1) +

R y.wz(k-l)][-¢!; (k-1]k-1) + ¢.XQ.(k-

¢'¢'[V I (k- 1k-1)1 - o5 ? [V

I(k-11k-1)1 + Yt Yy

* o5y [V J J

3. 6(k) = v;&(k]k-l)AT v,

T,
V;Q(k|k~1)A = VII(ka-l) VIQ(ka-l
Vgrlkik-1) Voqlklked

N
Vi1 s
i=1

| i
|
|

% viad (k-1 Z v
QI -y

UISITSHIE

T4-1
+ Av;y(klg-l)A ]

N .
1,]

(k}k ])A

1.xm(k-uk-l) - y;w1(k-1) +

k1) = vy (k1) + vgup(keD)]
003 DVgp (k-1 1k-1)1 +

B-18

o —_
S
’]ﬁ*N 0
) 0 A]:
U

J

B-19
R _
AV%N (k]k- l)A
B ¥y
A‘ R sJ(klk ])X Z]V16<(klk-1)xj
= %j=1 j=
n o0 A] Ay '
- NN
| g visd(elk-1)a Z v I(k|k- 1)x
i Nl N J
l 3 Vgl (Klk=10, 2 v d(klk- 1)A.J
j=1 j
-
| N N i, N N i
Sy ikt s DAy Dvig (kT |
gizl i jZI 1 374 ) j;1 IQ J
| N . . N .
1,) 1,] -
nglx E1VQI (klk-l)xj . iz X jZ]vQQ (klk UL® B-20




Equation p_pp can be rewritten as

) T
B(k) = AVyy(klk-])A

N

. .
. ‘ 1Y WIS D) 1a, WIS

i=1j=1 i=1 j=1

N N
) WA klk-l) . P (k k-1)
1171321 il 4 321 i¥g
A
= [511 biq
b
el by
a ] FBII by
B7(K) = Jetrey ~ i N Q
_ QI 7Q

where det(B) = b“bQQ - bIQbQI

Combining equations B-19 and B-22, it is easily obtained

G(K)

f

Tp-1
V;&(klk-])A B (K)

1 &1 &q
~ det(B) N 6 =

—

oy

-

B-21

B-22

(’ N N
Z v (klk DA, s 2 v (klk A ‘21 .z AV 'J(klk 1,
1= j=1

1

1 i E VN,J(k)k l)x 2 VN’J(k]k ])A t:g gxi ;
det(8 'bQI

N
AV ke, z Vg (klk-1a,
Y §

i,J
vQI (k]k=1),

IQ

y WL CITRIY
_;]vail(k\k-1)x 2 v (k|k Iy ) gx‘AJ 1g (1)

T TasaV I (k|k=1)
: § i%3°QQ \

baq
B-23




RRE N i3
61 = (j§1v1i (klk-])Aj)bII - (J-Z1V16 (klk-l)xj)bQI
Gy = v b 7 viad ) |
lIQ - '( I (klk ])X ) IQ ‘Z]VIQ (klk’])Aj bQQ
2 v (klk 3 )byg * 2 VléJ(klk ) )bgg| 825
_J
N “
Gy = (jzlv ) (klk-1), )bII - ( 2 v (klk mJ N
( g v (KIk-112 )by - ( 2 v (klk-I)xj)bQI B-26
3= B

pm- -

N
Ggq = |- Z vQI (klk-1)2;)bpq + ( Z Vag? (KIk=1)2;)bgq

N
N,j
l_.( ) vQI (klk-mj)bIQ + (521‘/00 (klk=-102)bgl o2z

4. Now calculate V')\(f;(klk) =[I - G(K)A]V')\&(klk-])

[I-GA]= EII E‘IQ E],..., >\N9 0.... 0—]
(_;QI (_;‘QQ 0...... 0, )\],...,)\’\L\
= [1 - 6] = [S;(k) SIQ(k)}
SQI(k) SQQ(k)

vv;(klk)=“s”(k) SIQ(k)][III(ka—l) Vm(klk-l)-J q
L_sm(k) SQQ(k) VQI(klk-T) VQQ(klk-l) B-28

e e £ e < A A e

13k




Vifklk) = SII(k)VII(k[k~1) + SIQ(k)vQI(klk-l)
VIQ(ka) = SII(k)VIQ(ka']) + SIQ(k)VQQ(ka-l)

VQI(klk) = SQI(k)VII(klk-I) + SQQ(k)VQI(klk-l)

Vgq(KIK) = SqqlkNgq(kIk-1) + Sqp (K qglkIk-1) B-29
Sp(K) =[-8, (g0 6 (g Sy
-Gy (s TGy p(20gs- - -Gpp(20hy
L.-gH(N)x], G (N 1-§11(N)ANJ B-30
J 5150 (K)1 = -Gyl B-31
E SEEEMOLS B-32
! SQQ(k) = P-gQQ(])A], -QQQ(I)AZ,... -QQQ(I)AN-1

-;—QQQ(Z)A] R 1-§_QQ(2)A2,. .. -QQQ(Z)AH

-QQQ(N)A], -§QQ(N)A2,.... ]-EQQ(N)AE‘ B-33

Summary
-, T
1. Vyglklk-i) = ¢V§Q(k~l]k-])¢T + 7T

2. 6(k) = v;y(k|k-1)ATB"(k)

3. Valklk) = [T - G(k)AJVar(k|k-1)

Y when
k=1

Initialize V}Q(0|0) = 0.

pwﬂbw,x A A -
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B(1)

&1

Gro(M)

GQI(]) =

V201000 = vay, +

Vi (1001 = —vgry

[
1
<
wendy
<

‘ i g
: Note vIIJ(110) anJ(IIO)

Vo1’ (110)]

[
2
<

+
<
<

v}dj(llo) -vé;j(1|o)

(Vg3 (110)] -

]
<
<

+
<

B ARy S
AaLly.y. +oviyl), A (=v.y: + vy,

PURRL A Y.'YJ) 1‘21 jZ] ; J( U REHT 'l
: i
ST f
Aaas(-vive + v.vi), Y A A (y.y, + 'Y
i gh A ylviyg Y1YJ) izl jzl .IAJ(Y.IYJ vivy)
|

T _ b -b']
b b NoteB](1)= ! l—
b J b2-b'2 bt b
, ) — -
[ N N 1
e Foyiyidal)b - Y.y : -b'
1 1YJ .YlYJ)AJ)b (jZ]( Yin + Yin)Aj)( b )
: ]
X . b2-b'2

N .
(jZ](YNyj *vrhgb - (jz_l('YNYJ + TNTH)A5)(=b")

i}
—
I O~
——
-

-

— -

N

N
+(jZ](injl+ Y%Yj)lj)b' + (jZ]('YiY

RV P
§*vivghyle

(3 Core ® vy gbr o () e-bre
YyYi Foyvidag)bt o+ (-vyvi + vpvs)as)b )
BE NYj NY37%5 31 NTj N3OS B

o~

N
(§ (-y
Jj=1

-

N

RV PUR TR MPOTY

i3 *1*3))‘3“’ ‘jZ]‘*m * Yin)AJ')b
: 1

be-b'2

N N
(3 Cring + noigt = o o e

L5 )
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— —

N N
GQQ(]) = '(jz]('y%vj + Yivj)kj)(-b') + (jzl(Yin + Y%Yé)kj)b

b2-pt2

N N
'(jZ]('Y&Yj + YNYé)Aj(’b') + (-ZI(YNYj + YﬁYé)Aj)b

i j= J

Note GII(l) = GQQ(l) GIQ(l) = -GQI(I)
c. $;(1) = Sge(M) Vi (110) = Vpa(1]0)

Sl = =Sq; (M) Vigf110) = Vg (1]0)

V(1) = S0V (110) + (1), (110)
Vit = SV (1]0) + Sp(1)¥ga(110)
Vr{(111) = Sqp 1V 1 (1]0) + Sgq(1)vg;(1]0)

VQQ(1|1) = SQQ(l)VQQ(1|0) + SQI(I)VIQ(1|0)

V(1) = vge(1]1)

V(M) = =g (1)

=
1]
~N

a. [v}i5(2|1)] = (o505 ¢;¢3)[V};j(1|1)] + (505 - ¢;¢j)[V}6j(1|1)]

[T 2IDT = (-ag00 + 00DV INT + (o045 + ¢e)V3 1]
- Yin + Y%Yj
\ (g (21101 = (-ades * o3 )VIOINT = (af] + a0 lVig0 1]

Yivy t oYY
[Vgg (21101 = (s505 + a36 DIV DT + (o505 - 05e) Ve (1]

Note Vv, (2]1) = vQQ(2|1)
Vro(zl‘) = ‘Vor(zl‘)
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b. B(2) = ava(2[1)a
=[b b
-b' b
G - P g’
-9’ HJ
c. S= [SII Slé} Sqp =
o1 Sqq S19
v(3]3) ="vII(3|3) vIQ(3|3)

L_VQI(3|3) VQQ(3]3)

Vi1(313) = vge313)

VIQ(3|3) = 'VQI(3|3)

=
it
=

From (15), (16), (17) and (18)

VII(ka-l) = VQQ(ka-l)

VIQ(klk-l) = —VQI(ka-l)

From (21)

B(K) = [:b g]
-b' b

From (24), (25), (26) and (27)
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‘ Gy (K) = Gg(k) = g

e

Brg(k) = =Gy (K) = g’

From (29)

e 5
B e e

Viplklk) = VQQ(k]k)

Vigtklk) = Vg (K]K)
k = k+l

Remark:
When the initialization vV (1]0) = VQQ(1|0) and vIQ(ljo) = -VQI(IIO)

is given it follows for arbitrary k that the diagonal elements of the parti-
tioned matrices are identical and the off diagonal elements are identical
but different in sign for Van(k|[k-1), B(k), G(k) and V}Q(k]k). Thus are

the initial results proved.

-
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